Home
Class 9
MATHS
Expand: (2x-(1)/(x)) (3x+(2)/(x))...

Expand: `(2x-(1)/(x)) (3x+(2)/(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2x - \frac{1}{x})(3x + \frac{2}{x})\), we will use the distributive property (also known as the FOIL method for binomials). Here’s a step-by-step solution: ### Step 1: Write down the expression We start with the expression: \[ (2x - \frac{1}{x})(3x + \frac{2}{x}) \] ### Step 2: Distribute the first term First, we multiply \(2x\) by each term in the second bracket: \[ 2x \cdot 3x + 2x \cdot \frac{2}{x} \] Calculating these: 1. \(2x \cdot 3x = 6x^2\) 2. \(2x \cdot \frac{2}{x} = 4\) (since \(x\) cancels out) So, from this step, we get: \[ 6x^2 + 4 \] ### Step 3: Distribute the second term Next, we multiply \(-\frac{1}{x}\) by each term in the second bracket: \[ -\frac{1}{x} \cdot 3x - \frac{1}{x} \cdot \frac{2}{x} \] Calculating these: 1. \(-\frac{1}{x} \cdot 3x = -3\) (since \(x\) cancels out) 2. \(-\frac{1}{x} \cdot \frac{2}{x} = -\frac{2}{x^2}\) So, from this step, we get: \[ -3 - \frac{2}{x^2} \] ### Step 4: Combine all the results Now, we combine all the terms we obtained from both distributions: \[ 6x^2 + 4 - 3 - \frac{2}{x^2} \] ### Step 5: Simplify the expression Now, we simplify the constant terms: \[ 6x^2 + (4 - 3) - \frac{2}{x^2} = 6x^2 + 1 - \frac{2}{x^2} \] ### Final Answer Thus, the expanded form of the expression \((2x - \frac{1}{x})(3x + \frac{2}{x})\) is: \[ 6x^2 + 1 - \frac{2}{x^2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand: (x-(1)/(x)+5)^(2)

Expand |(2,2x),(6,x)|

Expand (3x-2y)^(4)

Expand: (5x-3y-2)^(2)

Expand (x-3y+(z)/(2))^(2) .

Expand : (vii) (3x + (1)/( 3x) )^2

Expand |(3,x),(x,1)|

Expand : (i) (2x + (1)/( 2x))^2

Expand (3x-2y)^(4) .

Expand (y+x)^2