Home
Class 9
MATHS
Expand: (3a+ (2)/(b)) (2a- (3)/(b))...

Expand: `(3a+ (2)/(b)) (2a- (3)/(b))`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3a + \frac{2}{b})(2a - \frac{3}{b})\), we will use the distributive property, also known as the FOIL method (First, Outside, Inside, Last) for multiplying two binomials. ### Step-by-Step Solution: 1. **Identify the terms**: We have two binomials: \(3a + \frac{2}{b}\) and \(2a - \frac{3}{b}\). 2. **Apply the distributive property**: \[ (3a + \frac{2}{b})(2a - \frac{3}{b}) = 3a \cdot 2a + 3a \cdot \left(-\frac{3}{b}\right) + \frac{2}{b} \cdot 2a + \frac{2}{b} \cdot \left(-\frac{3}{b}\right) \] 3. **Calculate each term**: - First: \(3a \cdot 2a = 6a^2\) - Outside: \(3a \cdot \left(-\frac{3}{b}\right) = -\frac{9a}{b}\) - Inside: \(\frac{2}{b} \cdot 2a = \frac{4a}{b}\) - Last: \(\frac{2}{b} \cdot \left(-\frac{3}{b}\right) = -\frac{6}{b^2}\) 4. **Combine the results**: \[ 6a^2 - \frac{9a}{b} + \frac{4a}{b} - \frac{6}{b^2} \] 5. **Combine like terms**: - Combine \(-\frac{9a}{b}\) and \(\frac{4a}{b}\): \[ -\frac{9a}{b} + \frac{4a}{b} = -\frac{5a}{b} \] 6. **Final expression**: \[ 6a^2 - \frac{5a}{b} - \frac{6}{b^2} \] ### Final Answer: \[ 6a^2 - \frac{5a}{b} - \frac{6}{b^2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand : (a-2b)^3

Expand : (2a - (1)/( 2a) )^3

Expand: (4a- 5b- 2c)^(2)

Expand : (ii) (3a - (1)/( a) )^2

Expand: (5a-3b+c)^(2)

Expand : (i) (2a + b)^3

Expand : (i) (2a + b)^2

Expand : (ii) (a- 2b)^2

Expand |(2a , 3b), (5a , 7a)|

Expand (2a -4b +7) (2a+ 4b+7)