Home
Class 9
MATHS
Expand: (x+y- z)^(2)...

Expand: `(x+y- z)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x + y - z)^2\), we can use the formula for the square of a binomial, which states that \((a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca\). In this case, we treat \(-z\) as a negative term. ### Step-by-Step Solution: 1. **Identify the terms**: We have three terms in the expression: \(x\), \(y\), and \(-z\). 2. **Apply the expansion formula**: Using the formula \((a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca\), we can substitute \(a = x\), \(b = y\), and \(c = -z\). 3. **Calculate \(a^2\), \(b^2\), and \(c^2\)**: - \(x^2\) (which is \(a^2\)) - \(y^2\) (which is \(b^2\)) - \((-z)^2 = z^2\) (which is \(c^2\)) 4. **Calculate the cross terms**: - \(2ab = 2xy\) - \(2bc = 2y(-z) = -2yz\) - \(2ca = 2(-z)x = -2zx\) 5. **Combine all parts**: Putting it all together, we have: \[ (x + y - z)^2 = x^2 + y^2 + z^2 + 2xy - 2yz - 2zx \] ### Final Expanded Form: \[ (x + y - z)^2 = x^2 + y^2 + z^2 + 2xy - 2yz - 2zx \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand: (5x-3y-2)^(2)

Expand: (x-2y+2)^(2)

Expand : (3x - 2y)^3

Expand: (3x-2y + 5z)^(2)

Expand: (2x + 3y - 4z)^(2)

Expand: (3x+ 5y+ 2z) (3x- 5y + 2z)

Expand: (3x- 5y - 2z) (3x- 5y + 2z)

Expand : (2x- y + 2)^(3)

Expand (2x + 5y)^(5)

Expand (x-3y+(z)/(2))^(2) .