Home
Class 9
MATHS
Expand: (5a-3b+c)^(2)...

Expand: `(5a-3b+c)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((5a - 3b + c)^2\), we will use the formula for the square of a trinomial, which is: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx \] In our case, we can identify: - \(x = 5a\) - \(y = -3b\) - \(z = c\) Now, we will apply the formula step by step. ### Step 1: Calculate \(x^2\) \[ x^2 = (5a)^2 = 25a^2 \] ### Step 2: Calculate \(y^2\) \[ y^2 = (-3b)^2 = 9b^2 \] ### Step 3: Calculate \(z^2\) \[ z^2 = c^2 \] ### Step 4: Calculate \(2xy\) \[ 2xy = 2 \cdot (5a) \cdot (-3b) = -30ab \] ### Step 5: Calculate \(2yz\) \[ 2yz = 2 \cdot (-3b) \cdot c = -6bc \] ### Step 6: Calculate \(2zx\) \[ 2zx = 2 \cdot c \cdot (5a) = 10ac \] ### Step 7: Combine all the results Now, we can combine all the calculated parts: \[ (5a - 3b + c)^2 = 25a^2 + 9b^2 + c^2 - 30ab - 6bc + 10ac \] Thus, the expanded form of \((5a - 3b + c)^2\) is: \[ 25a^2 + 9b^2 + c^2 - 30ab - 6bc + 10ac \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand: (4a- 5b- 2c)^(2)

Expand: (5x-3y-2)^(2)

Expand (4a-2b-3c)^2

Expand : (a-2b)^3

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(1)/(2x))^(2) .

Expand : (5x +3y)^3

Expand (2a - (3)/(b))^(5) by binomial theorem

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Expand : (vi) (a-b + c)^2