Home
Class 9
MATHS
Expand: (x-(1)/(x)+5)^(2)...

Expand: `(x-(1)/(x)+5)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x - \frac{1}{x} + 5)^{2}\), we can use the formula for the square of a trinomial, which is: \[ (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca \] ### Step-by-step Solution: 1. **Identify the terms**: Let \( a = x \), \( b = -\frac{1}{x} \), and \( c = 5 \). 2. **Calculate \( a^{2} \)**: \[ a^{2} = x^{2} \] 3. **Calculate \( b^{2} \)**: \[ b^{2} = \left(-\frac{1}{x}\right)^{2} = \frac{1}{x^{2}} \] 4. **Calculate \( c^{2} \)**: \[ c^{2} = 5^{2} = 25 \] 5. **Calculate \( 2ab \)**: \[ 2ab = 2 \cdot x \cdot \left(-\frac{1}{x}\right) = -2 \] 6. **Calculate \( 2bc \)**: \[ 2bc = 2 \cdot \left(-\frac{1}{x}\right) \cdot 5 = -\frac{10}{x} \] 7. **Calculate \( 2ca \)**: \[ 2ca = 2 \cdot 5 \cdot x = 10x \] 8. **Combine all the terms**: Now, we can combine all the calculated parts: \[ (x - \frac{1}{x} + 5)^{2} = x^{2} + \frac{1}{x^{2}} + 25 - 2 - \frac{10}{x} + 10x \] 9. **Simplify the expression**: \[ = x^{2} + \frac{1}{x^{2}} + 23 - \frac{10}{x} + 10x \] ### Final Result: Thus, the expanded form of \((x - \frac{1}{x} + 5)^{2}\) is: \[ x^{2} + \frac{1}{x^{2}} + 23 - \frac{10}{x} + 10x \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand: (2x-(1)/(x)) (3x+(2)/(x))

Expand (x+(1)/(x) )^(6). ( x ne 0)

Expand: (x-8) (x-10)

Expand (x-3y+(z)/(2))^(2) .

Expand: (x-8) (x + 10)

Expand ((2)/( x) - (x)/(2))^(5), x ne 0 .

Expand: (x+y- z)^(2)

Expand: (x-2y+2)^(2)

Expand: (x+8) (x+10)

Expand: (x+8) (x-10)