Home
Class 9
MATHS
If a + b + c= 12 and a^(2) + b^(2) + c^(...

If `a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50`, find `ab + bc + ca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the given equations and the formula for the square of a sum. Here are the steps: 1. **Write down the given equations:** \[ a + b + c = 12 \quad \text{(1)} \] \[ a^2 + b^2 + c^2 = 50 \quad \text{(2)} \] 2. **Use the formula for the square of a sum:** The formula states that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] 3. **Substitute the known values into the formula:** From equation (1), we have: \[ (12)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] This simplifies to: \[ 144 = 50 + 2(ab + bc + ca) \] 4. **Rearrange the equation to isolate \(2(ab + bc + ca)\):** \[ 144 - 50 = 2(ab + bc + ca) \] \[ 94 = 2(ab + bc + ca) \] 5. **Divide both sides by 2 to find \(ab + bc + ca\):** \[ ab + bc + ca = \frac{94}{2} = 47 \] Thus, the value of \(ab + bc + ca\) is **47**.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24