Home
Class 9
MATHS
If a^(2) + b^(2) + c^(2) = 35 and ab+ bc...

If `a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23`, find `a + b+ c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b + c \) given the equations: 1. \( a^2 + b^2 + c^2 = 35 \) 2. \( ab + bc + ca = 23 \) We can use the identity for the square of a sum: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] ### Step 1: Substitute the known values into the identity Using the values from the problem: \[ (a + b + c)^2 = 35 + 2 \times 23 \] ### Step 2: Calculate \( 2(ab + ac + bc) \) Calculate \( 2 \times 23 \): \[ 2 \times 23 = 46 \] ### Step 3: Add the values Now, substitute this back into the equation: \[ (a + b + c)^2 = 35 + 46 \] ### Step 4: Calculate the sum Now, calculate \( 35 + 46 \): \[ 35 + 46 = 81 \] ### Step 5: Take the square root Now, we take the square root of both sides to find \( a + b + c \): \[ a + b + c = \sqrt{81} \] ### Step 6: Final calculation Calculate \( \sqrt{81} \): \[ \sqrt{81} = 9 \] Thus, the value of \( a + b + c \) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca