Home
Class 9
MATHS
If a + b+ c= p and ab + bc + ca= q, find...

If `a + b+ c= p and ab + bc + ca= q`, find `a^(2) +b^(2) + c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 \) given that \( a + b + c = p \) and \( ab + bc + ca = q \). ### Step-by-Step Solution: 1. **Start with the identity for the square of a sum**: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] 2. **Substitute the known values**: Since \( a + b + c = p \), we can substitute \( p \) into the equation: \[ p^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] 3. **Substitute \( ab + ac + bc \) with \( q \)**: We know that \( ab + ac + bc = q \). Therefore, we can rewrite the equation as: \[ p^2 = a^2 + b^2 + c^2 + 2q \] 4. **Rearrange to solve for \( a^2 + b^2 + c^2 \)**: To isolate \( a^2 + b^2 + c^2 \), we subtract \( 2q \) from both sides: \[ a^2 + b^2 + c^2 = p^2 - 2q \] 5. **Final expression**: Thus, we find that: \[ a^2 + b^2 + c^2 = p^2 - 2q \] ### Final Answer: \[ a^2 + b^2 + c^2 = p^2 - 2q \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a+b+c=p and ab+bc+ac=q, find a^(2)+b^(2)+c^(2) .

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

if a +b+c=9 and ab+bc+ca=26,find a^(2)+b^(2)+c^(2).

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

Let a, b and c be such that a + b + c= 0 and P=a^(2)/(2a^(2)+ bc) + b^(2)/(2b^(2) + ca) + c^(2)/(2c^(2) + ab) is defined. What is the value of P.

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca