Home
Class 9
MATHS
If a^(2) + b^(2) + c^(2) = 50 and ab +bc...

If `a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47`, find `a + b+ c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + b + c \) given the equations: 1. \( a^2 + b^2 + c^2 = 50 \) 2. \( ab + bc + ca = 47 \) We can use the identity for the square of a sum: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] ### Step 1: Substitute the known values into the identity We know: - \( a^2 + b^2 + c^2 = 50 \) - \( ab + bc + ca = 47 \) Substituting these values into the identity gives us: \[ (a + b + c)^2 = 50 + 2(47) \] ### Step 2: Calculate \( 2(ab + bc + ca) \) Now calculate \( 2(47) \): \[ 2(47) = 94 \] ### Step 3: Add the values together Now substitute this back into the equation: \[ (a + b + c)^2 = 50 + 94 \] Calculating the right side: \[ 50 + 94 = 144 \] So we have: \[ (a + b + c)^2 = 144 \] ### Step 4: Take the square root To find \( a + b + c \), we take the square root of both sides: \[ a + b + c = \sqrt{144} \] Calculating the square root: \[ \sqrt{144} = 12 \] Thus, we have: \[ a + b + c = 12 \quad \text{or} \quad a + b + c = -12 \] Since \( a, b, c \) are typically considered as real numbers in this context, we take the positive value: \[ a + b + c = 12 \] ### Final Answer The value of \( a + b + c \) is \( 12 \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a + b+ c= p and ab + bc + ca= q , find a^(2) +b^(2) + c^(2)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .