Home
Class 12
MATHS
Prove the following by the principle of ...

Prove the following by the principle of mathematical induction:`\ 11^(n+2)+12^(2n+1)` is divisible 133 for all `n in Ndot`

Text Solution

Verified by Experts

Let `P(n)=11^(n+2)+12^(2n+1)`
Step I For `n=1`,
`P(1) =11^(1+2)+12^(2xx1+1)=11^(3)+12^3`
`=(11+12)(11^2-11xx12+12^2)`
`=23 xx13` , which is divisible by 133.
Therefore , the result is true for `n=1`.
Step II Assume that the result is true for `n=k`, then
`P(k)=11^(k+2)+12^(2k+1)` is divisible by 133.
`rArr P(k)=133r`, where r is an integer .
Step III For `n=k+1`.
`therefore P(k+1)=11^((k+1)+2)+12^(2(k+1)+1)=11^(k+3)+12^(2k+3)`
`=11^((k+1)+1).11+12^(2k+1).12^2`
`=11.11^(k+2)+144.12^(2k+1)`

`therefore 11.11^((k+2))+144.12^(2k+1)=11(11^(k+2)+12^(2k+1))+133.12^(2k+1)`
i.e., `P(k+1)=11P(k)+133.12^(2k+1)`
But we know that , P(k) is divsible by 133. Also , `133.12^(2k+1)` is divisible by 133.
Hence , `P(k+1)` is divisible by 133. This shows that , the result is true for `n=k+1`.
Hence , by the principle of mathematical induction , the result is true for all . `n in N`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: \ 7^(2n)+2^(3n-3). 3^(n-1) is divisible 25 for all n in Ndot

Prove the following by the principle of mathematical induction: \ x^(2n-1)+y^(2n-1) is divisible by x+y for all n in NNdot

Prove the following by the principle of mathematical induction: \ 5^(2n+2)-24 n-25 is divisible 576 for all n

Prove the following by the principle of mathematical induction: \ 3^(2n+2)-8n-9 is divisible 8 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 5^(2n)-1 is divisible by 24 for all n in Ndot

Prove the following by the principle of mathematical induction: \ 2. 7^n+3. 5^n-5 is divisible 24 for all n in Ndot

Prove the following by the principle of mathematical induction: 2+5+8+11++(3n-1)=1/2n\ (3n+1)

Prove the following by the principle of mathematical induction: 1+3+3^2++3^(n-1)=(3^n-1)/2

Prove by the principle of mathematical induction that: n(n+1)(2n+1) is divisible by 6 for all n in Ndot

Prove the following by the principle of mathematical induction: 3^(2n)+7 is divisible by 8 for all n in Ndot