Home
Class 12
MATHS
Prove that the product of three consecut...

Prove that the product of three consecutive positive integers is divisible by `6`.

Text Solution

AI Generated Solution

To prove that the product of three consecutive positive integers is divisible by 6, we will follow a structured approach using mathematical induction. ### Step 1: Define the three consecutive integers Let the three consecutive positive integers be represented as: - \( n - 1 \) - \( n \) - \( n + 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos

Similar Questions

Explore conceptually related problems

Prove that the product of two consecutive positive integers is divisible by 2.

Prove that one of every three consecutive positive integers is divisible by 3.

Prove that one of every three consecutive positive integers is divisible by 3.

Statement-1: The smallest positive integer n such that n! can be expressed as a product of n-3 consecutive integers, is 6. Statement-2: Product of three consecutive integers is divisible by 6.

Show that product of any n consecutive integers is always divisible by n!

Prove that product of four consecutive positive integers increased by 1 is perfect square.

The product of consecutive positive integers is divisible by a. r ! b. r !+1 c. (r+1)! d. none of these

Find the sum of the first 40 positive integers divisible by 6.

The product of n consecutive natural numbers is always divisible by

Prove that the sum of two consecutive odd numbers is always divisible by four.

ARIHANT MATHS ENGLISH-MATHEMATICAL INDUCTION -Exercise (Subjective Type Questions)
  1. Prove the following by the principle of mathematical induction:\ 11...

    Text Solution

    |

  2. n^7-n is divisible by 42 .

    Text Solution

    |

  3. Prove that 3^(2n)+24n-1 is divisible by 32 .

    Text Solution

    |

  4. prove using mathematical induction:-n(n+1)(n+5) is divisible by 6 for ...

    Text Solution

    |

  5. Prove that (25)^(n+1)-24n+5735 is divisible by (24)^2 for all n=1,2,.....

    Text Solution

    |

  6. Prove the following by the principle of mathematical induction: \ x...

    Text Solution

    |

  7. Prove by induction that if n is a positive integer not divisible by 3,...

    Text Solution

    |

  8. Prove that the product of three consecutive positive integers is divis...

    Text Solution

    |

  9. Prove by induction that the sum of the cubes of three consecutive n...

    Text Solution

    |

  10. When the square of any odd number, greater than 1, is divided by 8, ...

    Text Solution

    |

  11. Prove the following by using induction for all n in N. 1+2+3+.....+n=...

    Text Solution

    |

  12. Prove the following by the principle of mathematical induction: 1^2...

    Text Solution

    |

  13. Prove the following by the principle of mathematical induction: \ 1...

    Text Solution

    |

  14. Prove the following by the principle of mathematical induction:1/(2...

    Text Solution

    |

  15. Prove 1.4.7+2.5.8+3.6.9+....... upto n terms =(n)/(4)(n+1)(n+6)(n+7)

    Text Solution

    |

  16. 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(...

    Text Solution

    |

  17. Let a(0)=2,a1=5 and for n ge 2, an=5a(n-1)-6a(n-2). Then prove by indu...

    Text Solution

    |

  18. If a(1)=1,a(n+1)=(1)/(n+1)a(n),a ge1, then prove by induction that a(n...

    Text Solution

    |

  19. if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2...

    Text Solution

    |

  20. Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+ta...

    Text Solution

    |