Home
Class 12
MATHS
' I ' is the incentre of triangle A B C ...

`' I '` is the incentre of triangle `A B C` whose corresponding sides are `a , b ,c ,` rspectively. `a vec I A+b vec I B+c vec I C` is always equal to (a). ` vec0` ( b). `(a+b+c) vec B C` (c). `( vec a+ vec b+ vec c) vec A C` ( d). `(a+b+c) vec A B`

A

0

B

(a+b+c)BC

C

(a+b+c)AC

D

(a+b+c)AB

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( a \vec{I}A + b \vec{I}B + c \vec{I}C = \vec{0} \), where \( I \) is the incenter of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to vertices \( A, B, C \) respectively. ### Step-by-Step Solution: 1. **Understanding the Incenter**: The incenter \( I \) of triangle \( ABC \) is the point where the angle bisectors of the triangle intersect. It is also the center of the circle inscribed in the triangle. 2. **Position Vectors**: Let the position vectors of points \( A, B, C \) be denoted as \( \vec{A}, \vec{B}, \vec{C} \). The position vector of the incenter \( I \) can be expressed as: \[ \vec{I} = \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] 3. **Expressing Vectors \( \vec{IA}, \vec{IB}, \vec{IC} \)**: The vectors from the incenter to the vertices can be expressed as: \[ \vec{IA} = \vec{A} - \vec{I}, \quad \vec{IB} = \vec{B} - \vec{I}, \quad \vec{IC} = \vec{C} - \vec{I} \] 4. **Substituting the Incenter**: Substitute the expression for \( \vec{I} \) into the equations for \( \vec{IA}, \vec{IB}, \vec{IC} \): \[ \vec{IA} = \vec{A} - \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] \[ \vec{IB} = \vec{B} - \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] \[ \vec{IC} = \vec{C} - \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] 5. **Calculating \( a \vec{IA} + b \vec{IB} + c \vec{IC} \)**: Now, we can compute: \[ a \vec{IA} + b \vec{IB} + c \vec{IC} = a \left( \vec{A} - \vec{I} \right) + b \left( \vec{B} - \vec{I} \right) + c \left( \vec{C} - \vec{I} \right) \] \[ = a \vec{A} + b \vec{B} + c \vec{C} - (a + b + c) \vec{I} \] 6. **Substituting for \( \vec{I} \)**: Substitute \( \vec{I} \) back into the equation: \[ = a \vec{A} + b \vec{B} + c \vec{C} - (a + b + c) \left( \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \right) \] \[ = a \vec{A} + b \vec{B} + c \vec{C} - (a \vec{A} + b \vec{B} + c \vec{C}) = \vec{0} \] 7. **Conclusion**: Therefore, we conclude that: \[ a \vec{IA} + b \vec{IB} + c \vec{IC} = \vec{0} \] ### Final Answer: Thus, the correct option is **(a) \( \vec{0} \)**.

To solve the problem, we need to show that \( a \vec{I}A + b \vec{I}B + c \vec{I}C = \vec{0} \), where \( I \) is the incenter of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to vertices \( A, B, C \) respectively. ### Step-by-Step Solution: 1. **Understanding the Incenter**: The incenter \( I \) of triangle \( ABC \) is the point where the angle bisectors of the triangle intersect. It is also the center of the circle inscribed in the triangle. 2. **Position Vectors**: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise VECTOR ALGEBRA EXERCISES 1: Single Option Correct Type Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec a= vec b+ vec c , vec b X vecd= vec0 and vec c*vec d=0 then ( vec dx( vec ax vec d))/( vec d^2) is equal to (a) vec a (b) vec b (c) vec c (d) vec d

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

ARIHANT MATHS ENGLISH-VECTOR ALGEBRA-Exercise (Single Option Correct Type Questions)
  1. The magnitudes of mutually perpendicular forces a,b and c are 2,10 and...

    Text Solution

    |

  2. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  3. Let vec a= hat i be a vector which makes an angle of 120^@ with a unit...

    Text Solution

    |

  4. Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n ...

    Text Solution

    |

  5. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  6. If vecx and vecy are two non-collinear vectors and ABC is a triangle w...

    Text Solution

    |

  7. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  8. If the resultant of two forces is equal in magnitude to one of the ...

    Text Solution

    |

  9. If vec b is a vector whose initial point divides the join of 5 hat ...

    Text Solution

    |

  10. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  11. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  12. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  13. On the xy plane where O is the origin, given points, A(1, 0), B(0, 1) ...

    Text Solution

    |

  14. If a +b+c = alphad, b+c+d=beta a and a, b, c are non-coplanar, then t...

    Text Solution

    |

  15. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  16. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  17. In the triangle OAB, M is the midpoint of AB, C is a point on OM, such...

    Text Solution

    |

  18. Points X and Y are taken on the sides QR and RS, respectively of a par...

    Text Solution

    |

  19. Find the value of lamda so that the points P, Q, R and S on the sides ...

    Text Solution

    |

  20. OABCDE is a regular hexagon of side 2 units in the XY-plane in the fir...

    Text Solution

    |