Home
Class 12
MATHS
If vec b is a vector whose initial poin...

If ` vec b` is a vector whose initial point divides the join of `5 hat i and 5 hat j` in the ratio `k :1` and whose terminal point is the origin and `| vec b|lt=sqrt(37),then , k` lies in the interval
a. `[-6,-1//6]`
b. `(-oo,-6]uu[-1//6,oo)`
c. `[0,6]`
d. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the section formula and properties of vectors. ### Step 1: Identify the points and the ratio The initial point divides the line segment joining the points \(5\hat{i}\) and \(5\hat{j}\) in the ratio \(k:1\). Therefore, we can denote the points as: - Point A: \(5\hat{i}\) - Point B: \(5\hat{j}\) ### Step 2: Apply the section formula Using the section formula, the coordinates of the point that divides the line segment joining \(A\) and \(B\) in the ratio \(k:1\) is given by: \[ \vec{P} = \frac{k \cdot \vec{B} + 1 \cdot \vec{A}}{k + 1} \] Substituting \(\vec{A} = 5\hat{i}\) and \(\vec{B} = 5\hat{j}\): \[ \vec{P} = \frac{k \cdot (5\hat{j}) + 1 \cdot (5\hat{i})}{k + 1} = \frac{5k\hat{j} + 5\hat{i}}{k + 1} \] This simplifies to: \[ \vec{P} = \frac{5\hat{i} + 5k\hat{j}}{k + 1} \] ### Step 3: Determine the vector \(\vec{b}\) The vector \(\vec{b}\) has its initial point at \(\vec{P}\) and its terminal point at the origin (0,0). Therefore: \[ \vec{b} = \vec{P} - \vec{0} = \frac{5\hat{i} + 5k\hat{j}}{k + 1} \] ### Step 4: Calculate the magnitude of \(\vec{b}\) The magnitude of \(\vec{b}\) is given by: \[ |\vec{b}| = \left| \frac{5\hat{i} + 5k\hat{j}}{k + 1} \right| = \frac{1}{k + 1} \sqrt{(5)^2 + (5k)^2} = \frac{1}{k + 1} \sqrt{25 + 25k^2} = \frac{5\sqrt{1 + k^2}}{k + 1} \] ### Step 5: Set up the inequality According to the problem, we have: \[ |\vec{b}| < \sqrt{37} \] This leads to the inequality: \[ \frac{5\sqrt{1 + k^2}}{k + 1} < \sqrt{37} \] ### Step 6: Square both sides Squaring both sides gives: \[ \frac{25(1 + k^2)}{(k + 1)^2} < 37 \] Cross-multiplying leads to: \[ 25(1 + k^2) < 37(k + 1)^2 \] ### Step 7: Expand and simplify Expanding both sides: \[ 25 + 25k^2 < 37(k^2 + 2k + 1) \] This simplifies to: \[ 25 + 25k^2 < 37k^2 + 74k + 37 \] Rearranging gives: \[ 0 < 12k^2 + 74k + 12 \] ### Step 8: Solve the quadratic inequality To find the values of \(k\) for which this inequality holds, we need to find the roots of the quadratic equation: \[ 12k^2 + 74k + 12 = 0 \] Using the quadratic formula: \[ k = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-74 \pm \sqrt{74^2 - 4 \cdot 12 \cdot 12}}{2 \cdot 12} \] Calculating the discriminant: \[ = \frac{-74 \pm \sqrt{5476 - 576}}{24} = \frac{-74 \pm \sqrt{4900}}{24} = \frac{-74 \pm 70}{24} \] This gives the roots: \[ k_1 = \frac{-4}{24} = -\frac{1}{6}, \quad k_2 = \frac{-144}{24} = -6 \] ### Step 9: Determine the intervals The quadratic \(12k^2 + 74k + 12\) opens upwards (as the coefficient of \(k^2\) is positive). Thus, the inequality \(12k^2 + 74k + 12 > 0\) holds for: \[ k \in (-\infty, -6) \cup \left(-\frac{1}{6}, \infty\right) \] ### Conclusion Thus, the correct answer is option **b**: \((-∞, -6] \cup [-\frac{1}{6}, ∞)\).

To solve the problem step by step, we will use the section formula and properties of vectors. ### Step 1: Identify the points and the ratio The initial point divides the line segment joining the points \(5\hat{i}\) and \(5\hat{j}\) in the ratio \(k:1\). Therefore, we can denote the points as: - Point A: \(5\hat{i}\) - Point B: \(5\hat{j}\) ### Step 2: Apply the section formula ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|7 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|3 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise VECTOR ALGEBRA EXERCISES 1: Single Option Correct Type Questions|1 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If vec b is a vector whose initial point divides thejoin of 5 hat ia n d5 hat j in the ratio k :1 and whose terminal point is the origin and | vec b|lt=sqrt(37),t h e nk lies in the interval

If vec b is a vector whose initial point divides thejoin of 5 hat ia n d5 hat j in the ratio k :1 and whose terminal point is the origin and | vec b|lt=sqrt(37),then k lies in the interval a. [-6,-1//6] b. (-oo,-6]uu[-1//6,oo) c. [0,6] d. none of these

Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k\ a n d\ vec b=6 hat i+5 hat j-2 hat kdot

If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 hat k ,\ find the angle between vec a\ a n d\ vec bdot

Find the projection of vec a on vec b , if vec a . vec b =8 and vec b=2 hat i + 6 hat j + 3 hat k .

If vec a= hat i+ hat j- hat k ,\ vec b=- hat i+2 hat j+2 hat k\ a n d\ vec c=- hat i+2 hat j- hat k , then a unit vector normal to the vectors a+b\ a n d\ b-c is

If vec a= hat i+ hat j , vec b= hat j+ hat k , vec c= hat k+ hat i find the unit vector in the direction of vec a+ vec b+ vec cdot

If vec a= hat i+ hat j+ hat k , vec b=4 hat i+3 hat j+4 hat k and vec c= hat i+alpha hat j+beta hat k are linearly dependent vectors & | vec c| = sqrt(3) , then ordered pair (alpha,beta) is (a) (1,1) (b) (1,-1) (c) (-1,1) (d) (-1,-1)

Find the sum of vectors vec a= hat i-2 hat j+ hat k ,\ vec b=-2 hat i+4 hat j+5 hat k\ a n d\ vec c= hat i-6 hat j-7 hat kdot

If vec a= hat i+ hat j+ hat k , vec c= hat j- hat k , vec adot vec b=5 and vec ax vec b= vec c , then vec b is equal to

ARIHANT MATHS ENGLISH-VECTOR ALGEBRA-Exercise (Single Option Correct Type Questions)
  1. The magnitudes of mutually perpendicular forces a,b and c are 2,10 and...

    Text Solution

    |

  2. If hati-3hatj+5hatk bisects the angle between hata and -hati+2hatj+2ha...

    Text Solution

    |

  3. Let vec a= hat i be a vector which makes an angle of 120^@ with a unit...

    Text Solution

    |

  4. Given three vectors vec a=6 hat i-3 hat j , vec b=2 hat i-6 hat ja n ...

    Text Solution

    |

  5. ' I ' is the incentre of triangle A B C whose corresponding sides are ...

    Text Solution

    |

  6. If vecx and vecy are two non-collinear vectors and ABC is a triangle w...

    Text Solution

    |

  7. If vec xa n d vec y are two non-collinear vectors and a, b, and c r...

    Text Solution

    |

  8. If the resultant of two forces is equal in magnitude to one of the ...

    Text Solution

    |

  9. If vec b is a vector whose initial point divides the join of 5 hat ...

    Text Solution

    |

  10. If 4hati+ 7hatj+ 8hatk, 2hati+ 3hatj+ 4hatk and 2hati+ 5hatj+7hatk are...

    Text Solution

    |

  11. If veca and vecb are two unit vectors and theta is the angle between t...

    Text Solution

    |

  12. A, B, C and D have position vectors veca, vecb, vecc and vecd, repecti...

    Text Solution

    |

  13. On the xy plane where O is the origin, given points, A(1, 0), B(0, 1) ...

    Text Solution

    |

  14. If a +b+c = alphad, b+c+d=beta a and a, b, c are non-coplanar, then t...

    Text Solution

    |

  15. The position vectors of the points P and Q with respect to the origin ...

    Text Solution

    |

  16. A B C D is a quadrilateral. E is the point of intersection of th...

    Text Solution

    |

  17. In the triangle OAB, M is the midpoint of AB, C is a point on OM, such...

    Text Solution

    |

  18. Points X and Y are taken on the sides QR and RS, respectively of a par...

    Text Solution

    |

  19. Find the value of lamda so that the points P, Q, R and S on the sides ...

    Text Solution

    |

  20. OABCDE is a regular hexagon of side 2 units in the XY-plane in the fir...

    Text Solution

    |