Home
Class 12
MATHS
If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,...

If `A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2))` then find the values of a and b.

A

4

B

5

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((A + B)^2 = A^2 + B^2\) for the matrices \(A\) and \(B\), we start with the given matrices: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} a & -1 \\ b & -1 \end{pmatrix} \] ### Step 1: Expand the Left Side We need to expand \((A + B)^2\): \[ A + B = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} + \begin{pmatrix} a & -1 \\ b & -1 \end{pmatrix} = \begin{pmatrix} 1 + a & -1 - 1 \\ 2 + b & -1 - 1 \end{pmatrix} = \begin{pmatrix} 1 + a & -2 \\ 2 + b & -2 \end{pmatrix} \] Now, we square this matrix: \[ (A + B)^2 = \begin{pmatrix} 1 + a & -2 \\ 2 + b & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 + a & -2 \\ 2 + b & -2 \end{pmatrix} \] Using matrix multiplication: \[ = \begin{pmatrix} (1 + a)(1 + a) + (-2)(2 + b) & (1 + a)(-2) + (-2)(-2) \\ (2 + b)(1 + a) + (-2)(2 + b) & (2 + b)(-2) + (-2)(-2) \end{pmatrix} \] Calculating each element: 1. First row, first column: \[ (1 + a)^2 - 4 - 2b = (1 + 2a + a^2 - 4 - 2b) = a^2 + 2a - 2b - 3 \] 2. First row, second column: \[ -2(1 + a) + 4 = -2 - 2a + 4 = 2 - 2a \] 3. Second row, first column: \[ (2 + b)(1 + a) - 4 - 2b = (2 + 2a + b + ab - 4 - 2b) = 2a + ab - b - 2 \] 4. Second row, second column: \[ -2(2 + b) + 4 = -4 - 2b + 4 = -2b \] Thus, we have: \[ (A + B)^2 = \begin{pmatrix} a^2 + 2a - 2b - 3 & 2 - 2a \\ 2a + ab - b - 2 & -2b \end{pmatrix} \] ### Step 2: Calculate the Right Side Now we calculate \(A^2 + B^2\): 1. Calculate \(A^2\): \[ A^2 = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 - 2 & -1 + 1 \\ 2 - 2 & -2 + 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \] 2. Calculate \(B^2\): \[ B^2 = \begin{pmatrix} a & -1 \\ b & -1 \end{pmatrix} \cdot \begin{pmatrix} a & -1 \\ b & -1 \end{pmatrix} = \begin{pmatrix} a^2 - b & -a + 1 \\ ab - b & -b - 1 \end{pmatrix} \] Now, we add \(A^2\) and \(B^2\): \[ A^2 + B^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} a^2 - b & -a + 1 \\ ab - b & -b - 1 \end{pmatrix} = \begin{pmatrix} a^2 - b - 1 & -a + 1 \\ ab - b & -b - 2 \end{pmatrix} \] ### Step 3: Set the Matrices Equal Now we set the two matrices equal: \[ \begin{pmatrix} a^2 + 2a - 2b - 3 & 2 - 2a \\ 2a + ab - b - 2 & -2b \end{pmatrix} = \begin{pmatrix} a^2 - b - 1 & -a + 1 \\ ab - b & -b - 2 \end{pmatrix} \] From this, we can equate the corresponding elements: 1. \(a^2 + 2a - 2b - 3 = a^2 - b - 1\) 2. \(2 - 2a = -a + 1\) 3. \(2a + ab - b - 2 = ab - b\) 4. \(-2b = -b - 2\) ### Step 4: Solve the Equations 1. From \(a^2 + 2a - 2b - 3 = a^2 - b - 1\): \[ 2a - b - 2 = 0 \implies b = 2a - 2 \] 2. From \(2 - 2a = -a + 1\): \[ 1 - 2 = -a + 2a \implies a = 1 \] 3. Substitute \(a = 1\) into \(b = 2a - 2\): \[ b = 2(1) - 2 = 0 \] ### Final Values Thus, the values of \(a\) and \(b\) are: \[ \boxed{a = 1, b = 0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,-1],[ 2,-1]] and B=[[a,1],[b,-1]] and (A+B)^2=A^2+B^2, then find the value of a and b .

If A=[(1,-1), (2,-1)],B=[(a,1),(b,-1)]a n d(A+B)^2=A^2+B^2,fin daa n dbdot

If A=[{:(,1,4),(,1,-3):}] and B=[{:(,1,2),(,-1,-1):}] , find: (A+B)^2

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If A=[(1,-1),(2,-1)],B = [(x,1),(4,-1)] and A^2+B^2=(A+B)^2 find the value of x. State, whether A^2 + B^2 and (A + B)^2 are always equal or not.

If A=[{:(,1,2),(,2,1):}] and B=[{:(,2,1),(,1,2):}] find : (i) A(BA) (ii) (AB) B.

If 2 cos(A + B) = 2 sin(A - B) = 1 , find the values of A and B.

If 2cos(A+B)=2sin(A-B)=1 , find the values of A and B.