Home
Class 12
MATHS
if A=[(1,2),(2,3)] and A^(2) -lambdaA-l(...

if `A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O,`then `lambda` is equal to

A

`-4`

B

`-2`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) given the matrix \(A\) and the equation \(A^2 - \lambda A - I_2 = O\), where \(I_2\) is the identity matrix of order 2. ### Step-by-Step Solution: 1. **Define the Matrix \(A\)**: \[ A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \] 2. **Calculate \(A^2\)**: To find \(A^2\), we multiply matrix \(A\) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \] Performing the multiplication: - First row, first column: \(1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5\) - First row, second column: \(1 \cdot 2 + 2 \cdot 3 = 2 + 6 = 8\) - Second row, first column: \(2 \cdot 1 + 3 \cdot 2 = 2 + 6 = 8\) - Second row, second column: \(2 \cdot 2 + 3 \cdot 3 = 4 + 9 = 13\) Thus, \[ A^2 = \begin{pmatrix} 5 & 8 \\ 8 & 13 \end{pmatrix} \] 3. **Set Up the Equation**: We substitute \(A^2\) and \(A\) into the equation: \[ A^2 - \lambda A - I_2 = O \] where \(I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\). This gives us: \[ \begin{pmatrix} 5 & 8 \\ 8 & 13 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] 4. **Combine the Matrices**: Now, we can combine the matrices: \[ \begin{pmatrix} 5 - \lambda & 8 - 2\lambda \\ 8 - 2\lambda & 13 - 3\lambda \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 4 - \lambda & 8 - 2\lambda \\ 8 - 2\lambda & 12 - 3\lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] 5. **Set Up the Equations**: From the above matrix equation, we can set up the following equations: - \(4 - \lambda = 0\) - \(8 - 2\lambda = 0\) - \(12 - 3\lambda = 0\) 6. **Solve for \(\lambda\)**: From the first equation: \[ 4 - \lambda = 0 \implies \lambda = 4 \] From the second equation: \[ 8 - 2\lambda = 0 \implies 2\lambda = 8 \implies \lambda = 4 \] From the third equation: \[ 12 - 3\lambda = 0 \implies 3\lambda = 12 \implies \lambda = 4 \] All equations give us the same result: \[ \lambda = 4 \] ### Final Answer: \(\lambda = 4\)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda is equal to

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to

If the circumcentre of the triangle whose vertices are (3, 2, -5) , (-3, 8, -5) and (-3, 2, 1) is (-1, lambda, -3) the integer lambda must be equal to……

If the distance between the plane 23x-10y-2z+48 =0 and the plane containing the lines (x+1)/2 =(y-3)/4= (z+1)/(3) and (x+3)/(2)=(y+2)/6 = (z-1)/(lambda)(lambda in R) is equal to k/sqrt(633) , then k is equal to __________.

If the maximum value of x which satisfies the inequality sin^(-1)(sinx) ge cos^(-1)(sinx)" for "x in (pi)/(2), 2pi" is " lambda, then (2lambda)/(3) is equal to (take pi=3.14 )

The value of lambda for which the sum of squares of roots of the equation x^2+(3-lambda)x+2=lambda is minimum, then lambda is equal to (a) 2 (b) -1 (c) -3 (d) -2

Lambda_(m)^(@)H_(2)O is equal to:

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

A matrix A = ({:(2,3),(5,-2):}) is such that A^(-1)= lambda A then what is the value of lambda .