Home
Class 12
MATHS
if A=[(costheta,sintheta),(-sintheta,cos...

if `A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l ` is true for

A

`theta=0`

B

`theta=(pi)/(4)`

C

`theta=(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the matrix \( A \) and determine for which values of \( \theta \) the result equals the identity matrix. Given the matrix: \[ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply the matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 2: Perform the multiplication Using matrix multiplication: - The element at (1,1): \[ \cos \theta \cdot \cos \theta + \sin \theta \cdot (-\sin \theta) = \cos^2 \theta - \sin^2 \theta \] - The element at (1,2): \[ \cos \theta \cdot \sin \theta + \sin \theta \cdot \cos \theta = 2 \sin \theta \cos \theta \] - The element at (2,1): \[ -\sin \theta \cdot \cos \theta + \cos \theta \cdot (-\sin \theta) = -2 \sin \theta \cos \theta \] - The element at (2,2): \[ -\sin \theta \cdot \sin \theta + \cos \theta \cdot \cos \theta = \cos^2 \theta - \sin^2 \theta \] Thus, we have: \[ A^2 = \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to the identity matrix The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] We set \( A^2 = I \): \[ \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] From this, we get two equations: 1. \( \cos^2 \theta - \sin^2 \theta = 1 \) 2. \( 2 \sin \theta \cos \theta = 0 \) ### Step 4: Solve the equations **From the second equation:** \[ 2 \sin \theta \cos \theta = 0 \implies \sin \theta = 0 \quad \text{or} \quad \cos \theta = 0 \] - If \( \sin \theta = 0 \): - \( \theta = 0, \pi, 2\pi, \ldots \) - If \( \cos \theta = 0 \): - \( \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots \) **From the first equation:** \[ \cos^2 \theta - \sin^2 \theta = 1 \implies \cos^2 \theta = 1 \quad \text{and} \quad \sin^2 \theta = 0 \] This confirms \( \theta = 0 \) or \( \theta = \pi \). ### Conclusion The values of \( \theta \) for which \( A^2 = I \) are: - \( \theta = 0 \) - \( \theta = \pi \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

If A=[(costheta,sintheta),(-sintheta,costheta)] , then find the value of |A| .

If A=[(costheta,-sintheta),(sintheta,costheta)], then find the values of theta satisfying the equation A^T+A=I_2 .

If for the matrix A=[(costheta, 2sintheta),(sintheta,costheta)],A^(-1)=A^(T) then number of possible value(s) of theta in [0, 2pi] is :

If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n is

If A = [(costheta,-sintheta),(sintheta,costheta)] , then the matrix A^(-50) , when theta = (pi)/(12) , is equal to

If A=[[costheta,sintheta],[-sintheta,costheta]] , then for any natural number, find the value of D e t\ (A^n) .

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)