Home
Class 12
MATHS
If [[alpha, beta], [gamma, -alpha]] is t...

If `[[alpha, beta], [gamma, -alpha]]` is to be square root of two-rowed unit matrix, then `alpha,beta` and `gamma` should satisfy the relation. a. `1-alpha^2+betagamma=0` b. `alpha^2+betagamma=0` c. `1+alpha^2+betagamma=0` d. `1-alpha^2-betagamma=0`

A

`1-alpha^(2)+betalambda=0`

B

`alpha^(2)+betalambda-1=0`

C

1+alpha^(2)+beta=0`

D

1-alpha-betalambda=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If [alphabetagamma-alpha] is to be square root of two-rowed unit matrix, then alpha,betaa n dgamma should satisfy the relation. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[alphabetagamma-alpha] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, then equation whose roots are alpha^(2),beta^(2),gamma^(2) is

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then (alpha + beta) (beta + gamma)(gamma + alpha) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=