Home
Class 12
MATHS
If A = [(1,0),(1/2,1)] , then A^100 is...

If `A = [(1,0),(1/2,1)]` , then `A^100` is equal to

A

`[(1,0),(25,0)]`

B

`[(1,0),(50,1)]`

C

`[(1,0),(1//2^(100),1)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{100} \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We start by multiplying matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( \frac{1}{2} \cdot 1 + 1 \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1 \) - Second row, second column: \( \frac{1}{2} \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we will calculate \( A^3 \) by multiplying \( A^2 \) by \( A \). \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot \frac{1}{2} = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 1 = 0 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2} \) - Second row, second column: \( 1 \cdot 0 + 1 \cdot 1 = 0 + 1 = 1 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \] ### Step 3: Identify the Pattern From our calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & 1 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 \\ \frac{3}{2} & 1 \end{pmatrix} \) It appears that the matrix \( A^n \) can be expressed as: \[ A^n = \begin{pmatrix} 1 & 0 \\ \frac{n}{2} & 1 \end{pmatrix} \] ### Step 4: Calculate \( A^{100} \) Using the pattern we identified, we can now calculate \( A^{100} \): \[ A^{100} = \begin{pmatrix} 1 & 0 \\ \frac{100}{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 50 & 1 \end{pmatrix} \] ### Final Answer Thus, the result is: \[ A^{100} = \begin{pmatrix} 1 & 0 \\ 50 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,1),(1,1)] ,then A^(100) is equal to

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[[0,1],[1,0]] , then A^2 is equal to: (a) [[0,1],[1,0]] (b) [[1,0],[0,1]] (c) [[1,0],[1,0]] (d) [[0,0],[1,1]]

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If [[x,1]] [[1,0],[-2,0]] =0 then x is equal to

Let A=((1,0,0),(2,1,0),(3,2,1)) . If u_(1) and u_(2) are column matrices such that Au_(1)=((1),(0),(0)) and Au_(2)=((0),(1),(0)) , then u_(1)+u_(2) is equal to :