Home
Class 12
MATHS
if the product of n matrices [(1,1),(0,1...

if the product of n matrices `[(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)]` the value of n is equal to

A

26

B

27

C

377

D

378

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that the product of the matrices \[ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \ldots, \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \] is equal to \[ \begin{pmatrix} 1 & 378 \\ 0 & 1 \end{pmatrix}. \] ### Step 1: Understand the Matrix Multiplication The product of two matrices of the form \[ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \] results in \[ \begin{pmatrix} 1 & a + b \\ 0 & 1 \end{pmatrix}. \] ### Step 2: Generalize the Product When we multiply \( n \) such matrices, we can see that the resulting matrix will be \[ \begin{pmatrix} 1 & (1 + 2 + 3 + \ldots + n) \\ 0 & 1 \end{pmatrix}. \] ### Step 3: Use the Formula for the Sum of the First \( n \) Natural Numbers The sum of the first \( n \) natural numbers is given by \[ S_n = \frac{n(n + 1)}{2}. \] ### Step 4: Set Up the Equation We need this sum to equal 378: \[ \frac{n(n + 1)}{2} = 378. \] ### Step 5: Solve for \( n \) Multiply both sides by 2: \[ n(n + 1) = 756. \] ### Step 6: Rearrange into a Quadratic Equation This gives us the quadratic equation: \[ n^2 + n - 756 = 0. \] ### Step 7: Factor the Quadratic Equation To factor, we look for two numbers that multiply to -756 and add to 1. The factors are 28 and -27: \[ (n + 28)(n - 27) = 0. \] ### Step 8: Solve for \( n \) Setting each factor to zero gives: 1. \( n + 28 = 0 \) → \( n = -28 \) (not a valid solution since \( n \) must be a natural number) 2. \( n - 27 = 0 \) → \( n = 27 \). ### Conclusion Thus, the value of \( n \) is \[ \boxed{27}. \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|19 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

For what vlaue of n is |n-1|+1 equal to 0?

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

Matrix [{:(1,0),(0,1):}] is :

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,a),(0,1):}] then A^(n) (where n in N ) is equal to

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}] , then the inverse of [{:(1, n), (0,1):}] is