Home
Class 12
MATHS
If A=[(-2,3),(-1,1)] then A^(3) is equa...

If `A=[(-2,3),(-1,1)]` then `A^(3) ` is equal to

A

2A

B

A

C

2I.

D

I

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^3 \) for the matrix \( A = \begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ (-2) \cdot (-2) + (3) \cdot (-1) = 4 - 3 = 1 \] - First row, second column: \[ (-2) \cdot (3) + (3) \cdot (1) = -6 + 3 = -3 \] - Second row, first column: \[ (-1) \cdot (-2) + (1) \cdot (-1) = 2 - 1 = 1 \] - Second row, second column: \[ (-1) \cdot (3) + (1) \cdot (1) = -3 + 1 = -2 \] Thus, we have: \[ A^2 = \begin{pmatrix} 1 & -3 \\ 1 & -2 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we will calculate \( A^3 \) by multiplying \( A^2 \) by \( A \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & -3 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ -1 & 1 \end{pmatrix} \] Calculating the elements of \( A^3 \): - First row, first column: \[ (1) \cdot (-2) + (-3) \cdot (-1) = -2 + 3 = 1 \] - First row, second column: \[ (1) \cdot (3) + (-3) \cdot (1) = 3 - 3 = 0 \] - Second row, first column: \[ (1) \cdot (-2) + (-2) \cdot (-1) = -2 + 2 = 0 \] - Second row, second column: \[ (1) \cdot (3) + (-2) \cdot (1) = 3 - 2 = 1 \] Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Conclusion The matrix \( A^3 \) is equal to the identity matrix \( I \): \[ A^3 = I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

(1+2i)/(1+3i) is equal to

(v) 1 2/3 x 1 3/5 is equal to

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

Let x=|(x1),(x2),(x3)|,A=|(1,-1, 2),( 2, 0, 1),( 3, 2, 1)|a n d B=[(3),( 2),( 1)]dotIfA X=B , Then X is equal to

((1+i)^(3))/(2+i) is equal to