Home
Class 12
MATHS
If A= [[1,1,1],[1,1,1],[1,1,1]] then...

If `A= [[1,1,1],[1,1,1],[1,1,1]]` then

A

`A^(3) = 9 A `

B

`A^(3) = 27 A `

C

`A + A = A^(2)`

D

`A^(-1)` does not exist

Text Solution

Verified by Experts

The correct Answer is:
A, D

Here, `abs(A)=0`
`therefore A^(-1)` does not exist.
Now, `A^(2) = [[1,1,1],[1,1,1],[1,1,1]][[1,1,1],[1,1,1],[1,1,1]]= [[3,3,3],[3,3,3],[3,3,3]] = 3A`
`therefore A^(3) = A^(2) cdot 2 = 3 A cdot A = 3 A^(2) = 3(3A) = 9 A`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A= [[1,-1,-1],[1,-1,0],[1,0,-1]] then find transpose of A

If A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]] , prove that A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N.

Find the rank of the matrix [[1,1,1],[1,-1,0],[1,1,1]]

a^(−1) + b^(−1) + c^(−1) = 0 such that |[1+a,1,1,],[1,1+b,1,],[1,1,1+c,]| =△ then the value of △ is

If a ,b and c are all non-zero and |[1+a,1, 1],[ 1,1+b,1],[1,1,1+c]|=0, then prove that 1/a+1/b+1/c+1=0

If x , y , z are different from zero and |[1+x,1 ,1], [1, 1+y,1], [1, 1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

Evaluate the following: |[1,1,1],[1,1+x,1],[1,1,1+y]|

Let A= [{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B= [{:(,2,-1,-1),(,-1,2,-1),(,-1,-1,2):}] and C=3A+7B

Show that |[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc(1+1/a+1/b+1/c)=abc+bc+ca+ab

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1