Home
Class 12
MATHS
If A=[(2,2,1),(1,3,1),(1,2,2)] and the ...

If `A=[(2,2,1),(1,3,1),(1,2,2)]` and the sum of eigen values of A is m anda product of eigen values of A is n, then m+n is equal to

A

10

B

12

C

14

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the eigenvalues of the matrix \( A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix} \). The sum of the eigenvalues is denoted as \( m \) and the product of the eigenvalues as \( n \). We will then calculate \( m + n \). ### Step 1: Write the characteristic polynomial To find the eigenvalues, we first need to compute the characteristic polynomial, which is given by the determinant of \( A - \lambda I \), where \( I \) is the identity matrix. \[ A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{pmatrix} \] ### Step 2: Calculate the determinant We need to calculate the determinant of the matrix \( A - \lambda I \): \[ \text{det}(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix, we can expand this determinant: \[ = (2 - \lambda) \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 2 - \lambda \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 - \lambda \\ 1 & 2 \end{vmatrix} \] Calculating each of these \( 2 \times 2 \) determinants: 1. \( \begin{vmatrix} 3 - \lambda & 1 \\ 2 & 2 - \lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda) - 2 = (6 - 5\lambda + \lambda^2 - 2) = \lambda^2 - 5\lambda + 4 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (1)(2 - \lambda) - (1)(1) = 2 - \lambda - 1 = 1 - \lambda \) 3. \( \begin{vmatrix} 1 & 3 - \lambda \\ 1 & 2 \end{vmatrix} = (1)(2) - (1)(3 - \lambda) = 2 - (3 - \lambda) = \lambda - 1 \) Substituting these back into the determinant: \[ \text{det}(A - \lambda I) = (2 - \lambda)(\lambda^2 - 5\lambda + 4) - 2(1 - \lambda) + (\lambda - 1) \] ### Step 3: Expand and simplify Expanding the expression: \[ = (2 - \lambda)(\lambda^2 - 5\lambda + 4) - 2 + 2\lambda + \lambda - 1 \] After simplification, we will arrive at a cubic polynomial in \( \lambda \). ### Step 4: Find the eigenvalues Once we have the cubic polynomial, we can find the eigenvalues \( \lambda_1, \lambda_2, \lambda_3 \) using Vieta's formulas: - The sum of the eigenvalues \( m = \lambda_1 + \lambda_2 + \lambda_3 \) is equal to the coefficient of \( \lambda^2 \) term (with a negative sign). - The product of the eigenvalues \( n = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 \) is equal to the constant term (with a sign depending on the degree of the polynomial). ### Step 5: Calculate \( m + n \) After finding \( m \) and \( n \), we simply add them together to find \( m + n \). ### Conclusion From the calculations, we find that: - \( m = 7 \) - \( n = 5 \) Thus, \( m + n = 7 + 5 = 12 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If 3, – 2 are the eigen values of a non-singular matrix A and |A| = 4 , find the eigen values of adj(A)

Find the sum of the possible integer values of m: 2m+n=10 m(n-1)=9

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If 1/(1!11!)+1/(3!9!)+1/(5!7!)=(2^n)/(m!) then the value of m + n is

If the points (-1,1,2),(2,m ,5)a n d(3,11 ,6) are collinear, find the value of mdot

(x)/(2x-1)=(2x+1)/(x+2) If m and n represents the solutions of the equations above, what is the value of m+n?

Find the value of the products: (3m-2n)(2m-3n)a t\ m=1,\ n=-1

If the coefficient of x^(2) + coefficient of x in the expanssion of (1+x)^(m)(1-x)^(n),(mnen) is equal to – m, then the value of n – m is equal to:

If m = 1, n = 2 and p = -3, find the value of : 2mn^(4)-15m^(2)n+p