Home
Class 12
MATHS
Let A =[[1,2,2],[2,1,2],[2,2,1]], then...

Let `A =[[1,2,2],[2,1,2],[2,2,1]]`, then

A

`A^(2) - 4A-5I_(3)=O`

B

`A^(-1) = 1/5 (A-4I_(3))`

C

`A^(3)` is not invertible

D

`A^(2)` is invertible

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`because A^(2)= [[1,2,2],[2,1,2],[2,2,1]][[1,2,2],[2,1,2],[2,2,1]]= [[9, 8,8],[8,9,8],[8,8,9]]`
We have, `A^(2) - 4A - 5 I_(3)`
`= [[9, 8,8],[8,9,8],[8,8,9]]-4[[1,2,2],[2,1,2],[2,2,1]]-5 [[1,0,0],[0,1,0],[0,0,1]]`
`=[[0,0,0],[0,o,0],[0,0,0]]= 0`
`rArr 5I_(3) =A^(2) - 4 A = A(A-4I_(3))`
` rArr I_(3) = 1/5 A(A-4I_(3))`
`therefore A^(-1) = 1/5 A (A-4I_(3))`
Since, `abs(A) = 5`
`therefore abs(A^(3)) = abs(A)^(3) = 125 ne 0 `
` rArr A^(3)` is invertible
Similarly, `A^(2)` is invertible.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|30 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let x=|[x_1],[x_2],[x_3]|,A=|[1,-1, 2], [2,0,1], [3,2,1]| a n d B=|[3], [2],[1]| dotIfA X=B , Then X is equal to

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)] . If B is the inverse of A, then alpha is :

Let f(x)=x^2-5x+6 then find f(A) when A=[[2,0,1] , [2,1,3] , [1, -1, 0]]

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals

Let A = {1, 2, 3} and R = {(1, 1), (2,2), (1, 2), (2, 1), (1,3)} then R is

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

Let R = {(1, 2), (2, 2), (1, 1), (4,4), (1,3), (3, 3), (3,2)} be a relation on the set {1,2,3,4}. Then,

Let A= [{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B= [{:(,2,-1,-1),(,-1,2,-1),(,-1,-1,2):}] and C=3A+7B