Home
Class 12
MATHS
Let A= [[a,b,c],[b,c,a],[c,a,b]] is an o...

Let `A= [[a,b,c],[b,c,a],[c,a,b]]` is an orthogonal matrix and `abc = lambda (lt0).`
The value ` a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2)`, is

A

`2lambda`

B

`-2lambda`

C

`lambda^(2)`

D

`-lambda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given orthogonal matrix \( A \) defined as: \[ A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] Since \( A \) is an orthogonal matrix, we have: \[ A A^T = I \] where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 1: Calculate \( A^T \) The transpose of matrix \( A \) is obtained by swapping rows with columns: \[ A^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] ### Step 2: Multiply \( A \) and \( A^T \) Now, we compute the product \( A A^T \): \[ A A^T = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ a^2 + b^2 + c^2 \] - First row, second column: \[ ab + bc + ca \] - First row, third column: \[ ac + ba + cb \] - Second row, first column: \[ ba + cb + ac \] - Second row, second column: \[ b^2 + c^2 + a^2 \] - Second row, third column: \[ bc + ca + ab \] - Third row, first column: \[ ca + ab + bc \] - Third row, second column: \[ cb + ac + ba \] - Third row, third column: \[ c^2 + a^2 + b^2 \] Thus, we have: \[ A A^T = \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & c^2 + a^2 + b^2 \end{bmatrix} \] ### Step 3: Set the product equal to the identity matrix Since \( A A^T = I \), we have: \[ \begin{bmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + bc + ca \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + bc + ca \\ ab + bc + ca & ab + bc + ca & c^2 + a^2 + b^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] From this, we can derive the following equations: 1. \( a^2 + b^2 + c^2 = 1 \) 2. \( ab + bc + ca = 0 \) ### Step 4: Find \( a^2b^2 + b^2c^2 + c^2a^2 \) We need to find the value of \( a^2b^2 + b^2c^2 + c^2a^2 \). We can use the identity: \[ (a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting the known values: \[ (a+b+c)^2 = 1 + 2(0) = 1 \] Thus, \( a + b + c = \pm 1 \). ### Step 5: Use the identity for squares We can express \( a^2b^2 + b^2c^2 + c^2a^2 \) in terms of \( (ab + bc + ca)^2 \): \[ (ab + bc + ca)^2 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a + b + c) \] Since \( ab + bc + ca = 0 \): \[ 0 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a + b + c) \] Substituting \( a + b + c = \pm 1 \): \[ 0 = a^2b^2 + b^2c^2 + c^2a^2 + 2abc(\pm 1) \] Thus, we have: \[ a^2b^2 + b^2c^2 + c^2a^2 = -2abc \] ### Step 6: Substitute \( abc = \lambda \) Given \( abc = \lambda < 0 \): \[ a^2b^2 + b^2c^2 + c^2a^2 = -2\lambda \] ### Final Answer The value of \( a^2b^2 + b^2c^2 + c^2a^2 \) is: \[ -2\lambda \]

To solve the problem, we start with the given orthogonal matrix \( A \) defined as: \[ A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The equation whose roots are a, b, c, is

If a+b+c=9 and a b+b c+c a=23 , find the value of a^2+b^2+c^2

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a, b, c are positive real number such that lamba abc is the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) , then lambda =

If a+b+c=0 , then write the value of (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

If a!=6,b,c satisfy |[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

If [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal matrix, then the value of |abc| is equal to (where |*| represents modulus function)

If a+b+c=0 and a^2+b^2+c^2=16 , find the value of a b+b c+c a

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Passage Based Questions)
  1. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  2. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  3. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  4. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  5. Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

    Text Solution

    |

  6. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  7. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  8. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  9. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  10. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  11. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  14. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  15. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |

  16. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |