Home
Class 12
MATHS
LetA= [[1,0,0],[2,1,0],[3,2,1]] be a squ...

Let`A= [[1,0,0],[2,1,0],[3,2,1]]` be a square matrix and ` C_(1), C_(2), C_(3)` be three
comumn matrices satisfying `AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]]` of matrix B. If the matrix `C= 1/3 (AcdotB).`
The value of `det(B^(-1))`, is

A

2

B

`1/2`

C

3

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \det(B^{-1}) \) given the matrix \( A \) and the conditions on matrices \( C_1, C_2, C_3 \). ### Step 1: Define the matrices Let \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \] Let \( C_1, C_2, C_3 \) be column matrices such that: \[ AC_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad AC_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \quad AC_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \] ### Step 2: Find \( C_1 \) Let \( C_1 = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \). From \( AC_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \): \[ \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \] This gives us the equations: 1. \( \alpha_1 = 1 \) 2. \( 2\alpha_1 + \alpha_2 = 0 \) → \( \alpha_2 = -2 \) 3. \( 3\alpha_1 + 2\alpha_2 + \alpha_3 = 0 \) → \( 3 - 4 + \alpha_3 = 0 \) → \( \alpha_3 = 1 \) Thus, \[ C_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \] ### Step 3: Find \( C_2 \) Let \( C_2 = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} \). From \( AC_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \): \[ \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \] This gives us the equations: 1. \( \beta_1 = 2 \) 2. \( 2\beta_1 + \beta_2 = 3 \) → \( 4 + \beta_2 = 3 \) → \( \beta_2 = -1 \) 3. \( 3\beta_1 + 2\beta_2 + \beta_3 = 0 \) → \( 6 - 2 + \beta_3 = 0 \) → \( \beta_3 = -4 \) Thus, \[ C_2 = \begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix} \] ### Step 4: Find \( C_3 \) Let \( C_3 = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix} \). From \( AC_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \): \[ \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \] This gives us the equations: 1. \( \gamma_1 = 2 \) 2. \( 2\gamma_1 + \gamma_2 = 3 \) → \( 4 + \gamma_2 = 3 \) → \( \gamma_2 = -1 \) 3. \( 3\gamma_1 + 2\gamma_2 + \gamma_3 = 1 \) → \( 6 - 2 + \gamma_3 = 1 \) → \( \gamma_3 = -3 \) Thus, \[ C_3 = \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} \] ### Step 5: Construct matrix \( B \) Now, we can construct matrix \( B \): \[ B = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix} \] ### Step 6: Calculate \( \det(B) \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \det(B) = 1 \cdot \begin{vmatrix} -1 & -1 \\ -4 & -3 \end{vmatrix} - 2 \cdot \begin{vmatrix} -2 & -1 \\ 1 & -3 \end{vmatrix} + 2 \cdot \begin{vmatrix} -2 & -1 \\ 1 & -4 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} -1 & -1 \\ -4 & -3 \end{vmatrix} = (-1)(-3) - (-1)(-4) = 3 - 4 = -1 \) 2. \( \begin{vmatrix} -2 & -1 \\ 1 & -3 \end{vmatrix} = (-2)(-3) - (-1)(1) = 6 + 1 = 7 \) 3. \( \begin{vmatrix} -2 & -1 \\ 1 & -4 \end{vmatrix} = (-2)(-4) - (-1)(1) = 8 + 1 = 9 \) Now substituting back: \[ \det(B) = 1 \cdot (-1) - 2 \cdot 7 + 2 \cdot 9 = -1 - 14 + 18 = 3 \] ### Step 7: Find \( \det(B^{-1}) \) Using the property of determinants: \[ \det(B^{-1}) = \frac{1}{\det(B)} = \frac{1}{3} \] ### Final Answer: \[ \det(B^{-1}) = \frac{1}{3} \]

To solve the problem, we need to find the value of \( \det(B^{-1}) \) given the matrix \( A \) and the conditions on matrices \( C_1, C_2, C_3 \). ### Step 1: Define the matrices Let \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

If A = [[2,3],[-1,5]] , B = [[3,-1],[4,7]] and C = [[5,-1],[0,3]], show that A(B +C)=AB+AC

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Passage Based Questions)
  1. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  2. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  3. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  4. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  5. Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

    Text Solution

    |

  6. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  7. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  8. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  9. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  10. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  11. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  14. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  15. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |

  16. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |