Home
Class 12
MATHS
LetA= [[1,0,0],[2,1,0],[3,2,1]] be a squ...

Let`A= [[1,0,0],[2,1,0],[3,2,1]]` be a square matrix and ` C_(1), C_(2), C_(3)` be three
column matrices satisfying `AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]]` of matrix B. If the matrix `C= 1/3 (AcdotB).`
The ratio of the trace of the matrix B to the matrix C, is

A

`-9/5`

B

`-5/9`

C

`-2/3`

D

`-3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first find the matrix \( B \) using the conditions given for \( C_1, C_2, \) and \( C_3 \), and then we will calculate the matrix \( C \) and find the required ratio of the traces. ### Step 1: Find \( C_1 \) Given \( AC_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \): Let \( C_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \). Then, we have: \[ A \cdot C_1 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \] This gives us the following equations: 1. \( 1a + 0b + 0c = 1 \) → \( a = 1 \) 2. \( 2a + 1b + 0c = 0 \) → \( 2(1) + b = 0 \) → \( b = -2 \) 3. \( 3a + 2b + 1c = 0 \) → \( 3(1) + 2(-2) + c = 0 \) → \( 3 - 4 + c = 0 \) → \( c = 1 \) Thus, \( C_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \). ### Step 2: Find \( C_2 \) Given \( AC_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \): Let \( C_2 = \begin{bmatrix} d \\ e \\ f \end{bmatrix} \). Then, we have: \[ A \cdot C_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} \] This gives us the following equations: 1. \( 1d + 0e + 0f = 2 \) → \( d = 2 \) 2. \( 2d + 1e + 0f = 3 \) → \( 2(2) + e = 3 \) → \( 4 + e = 3 \) → \( e = -1 \) 3. \( 3d + 2e + 1f = 0 \) → \( 3(2) + 2(-1) + f = 0 \) → \( 6 - 2 + f = 0 \) → \( f = -4 \) Thus, \( C_2 = \begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix} \). ### Step 3: Find \( C_3 \) Given \( AC_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \): Let \( C_3 = \begin{bmatrix} g \\ h \\ i \end{bmatrix} \). Then, we have: \[ A \cdot C_3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} g \\ h \\ i \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \] This gives us the following equations: 1. \( 1g + 0h + 0i = 2 \) → \( g = 2 \) 2. \( 2g + 1h + 0i = 3 \) → \( 2(2) + h = 3 \) → \( 4 + h = 3 \) → \( h = -1 \) 3. \( 3g + 2h + 1i = 1 \) → \( 3(2) + 2(-1) + i = 1 \) → \( 6 - 2 + i = 1 \) → \( i = -3 \) Thus, \( C_3 = \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} \). ### Step 4: Construct Matrix \( B \) Now, we can construct matrix \( B \) using \( C_1, C_2, C_3 \): \[ B = \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix} \] ### Step 5: Calculate the Trace of Matrix \( B \) The trace of a matrix is the sum of its diagonal elements: \[ \text{Trace}(B) = 1 + (-1) + (-3) = -3 \] ### Step 6: Calculate Matrix \( C \) Given \( C = \frac{1}{3} A \cdot B \): \[ C = \frac{1}{3} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix} \] Calculating \( A \cdot B \): 1. First row: \( \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = 1 \), \( \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix} = 2 \), \( \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} = 2 \) 2. Second row: \( \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = 2 - 2 = 0 \), \( \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix} = 4 - 1 = 3 \), \( \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} = 4 - 1 = 3 \) 3. Third row: \( \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = 3 - 4 + 1 = 0 \), \( \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix} = 6 - 2 - 4 = 0 \), \( \begin{bmatrix} 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix} = 6 - 2 - 3 = 1 \) Thus, \[ A \cdot B = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix} \] Now, \[ C = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & 1 & 1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \] ### Step 7: Calculate the Trace of Matrix \( C \) \[ \text{Trace}(C) = \frac{1}{3} + 1 + \frac{1}{3} = \frac{5}{3} \] ### Step 8: Find the Ratio of the Traces The ratio of the trace of matrix \( B \) to the trace of matrix \( C \): \[ \text{Ratio} = \frac{\text{Trace}(B)}{\text{Trace}(C)} = \frac{-3}{\frac{5}{3}} = -3 \cdot \frac{3}{5} = -\frac{9}{5} \] ### Final Answer The ratio of the trace of the matrix \( B \) to the matrix \( C \) is \( -\frac{9}{5} \). ---

To solve the problem step by step, we will first find the matrix \( B \) using the conditions given for \( C_1, C_2, \) and \( C_3 \), and then we will calculate the matrix \( C \) and find the required ratio of the traces. ### Step 1: Find \( C_1 \) Given \( AC_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \): Let \( C_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)

If A = [[1,2],[3,-5]] and B=[[1,0],[0,2]] and X is a matrix such that A=BX , then X=

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

In the matrix [[1,0,5],[2,-3,4]] order of matrix matrix is………

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Passage Based Questions)
  1. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  2. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  3. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  4. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  5. Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

    Text Solution

    |

  6. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  7. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  8. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  9. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  10. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  11. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  14. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  15. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |

  16. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |