Home
Class 12
MATHS
LetA= [[1,0,0],[2,1,0],[3,2,1]] be a squ...

Let`A= [[1,0,0],[2,1,0],[3,2,1]]` be a square matrix and ` C_(1), C_(2), C_(3)` be three comumn matrices satisgying `AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]]` of matrix B. If the matrix `C= 1/3 (AcdotB).`find `sin^(-1) (detA) + tan^(-1) (9det C) `

A

`pi/4`

B

`pi/2`

C

`(3pi)/4`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the question. ### Step 1: Identify the matrix A and calculate its determinant. Given matrix \( A \): \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \] To find \( \text{det}(A) \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \] For our matrix \( A \): - \( a = 1, b = 0, c = 0 \) - \( d = 2, e = 1, f = 0 \) - \( g = 3, h = 2, i = 1 \) Plugging in the values: \[ \text{det}(A) = 1(1 \cdot 1 - 0 \cdot 2) - 0(2 \cdot 1 - 0 \cdot 3) + 0(2 \cdot 0 - 1 \cdot 3) = 1(1) = 1 \] ### Step 2: Calculate the determinant of matrix B. From the problem, we know: \[ AC_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad AC_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \quad AC_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \] Thus, we can express matrix \( B \) as: \[ B = \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} \] The multiplication \( A \cdot B \) gives us: \[ A \cdot B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} C_1 & C_2 & C_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 1 \end{bmatrix} \] ### Step 3: Calculate the determinant of the resulting matrix D. Let: \[ D = A \cdot B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 2 & 3 & 1 \end{bmatrix} \] To find \( \text{det}(D) \): \[ \text{det}(D) = 1(3 \cdot 1 - 0 \cdot 3) - 0(2 \cdot 1 - 0 \cdot 2) + 0(2 \cdot 0 - 3 \cdot 2) = 1(3) = 3 \] ### Step 4: Calculate the determinant of matrix C. Given: \[ C = \frac{1}{3} (A \cdot B) = \frac{1}{3} D \] Using the property of determinants: \[ \text{det}(C) = \left(\frac{1}{3}\right)^3 \cdot \text{det}(D) = \frac{1}{27} \cdot 3 = \frac{1}{9} \] ### Step 5: Calculate \( \sin^{-1}(\text{det}(A)) + \tan^{-1}(9 \cdot \text{det}(C)) \). Now we have: - \( \text{det}(A) = 1 \) - \( \text{det}(C) = \frac{1}{9} \) Calculating: \[ \sin^{-1}(\text{det}(A)) = \sin^{-1}(1) = \frac{\pi}{2} \text{ (or 90 degrees)} \] \[ \tan^{-1}(9 \cdot \text{det}(C)) = \tan^{-1}(9 \cdot \frac{1}{9}) = \tan^{-1}(1) = \frac{\pi}{4} \text{ (or 45 degrees)} \] Adding these: \[ \sin^{-1}(\text{det}(A)) + \tan^{-1}(9 \cdot \text{det}(C)) = \frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4} \text{ (or 135 degrees)} \] ### Final Answer: \[ \sin^{-1}(\text{det}(A)) + \tan^{-1}(9 \cdot \text{det}(C)) = 135^\circ \]

To solve the problem step by step, we will follow the instructions given in the question. ### Step 1: Identify the matrix A and calculate its determinant. Given matrix \( A \): \[ A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The value of det(B^(-1)) , is

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three column matrices satisfying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). The ratio of the trace of the matrix B to the matrix C, is

If A=[[1,2,3],[2,0,-2]],B=[[1,1,-1],[2,0,3],[3,-1,2]] and C=[[1,3],[0,2],[-1,4]] find A(BC).

If A = [[2,3],[-1,5]] , B = [[3,-1],[4,7]] and C = [[5,-1],[0,3]], show that A(B +C)=AB+AC

Let A = [(1,0,0), (2,1,0), (3,2,1)], and U_1, U_2 and U_3 are columns of a 3 xx 3 matrix U . If column matrices U_1, U_2 and U_3 satisfy AU_1 = [(1),(0),(0)], AU_2 = [(2),(3),(0)], AU_3 = [(2),(3),(1)] then the sum of the elements of the matrix U^(-1) is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

If A=[[1,2,-3] , [5,0,2] , [1,-1,1]] and B=[[3,-1,2] , [4,2,5] , [2,0,3]] then find matrix C such that A+2C=B

Given A=[[1,2,-3],[5,0,2],[1,-1,1]] and B=[[3,-1,2],[4,2,5],[2,0,3]] , find the matrix C such that A+C=B.

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

ARIHANT MATHS ENGLISH-MATRICES -Exercise (Passage Based Questions)
  1. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  2. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  3. Suppose A and B be two ono-singular matrices such that AB= BA^(m), B...

    Text Solution

    |

  4. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  5. Let A= [[a,b,c],[b,c,a],[c,a,b]] then find tranpose of A matrix

    Text Solution

    |

  6. Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lam...

    Text Solution

    |

  7. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  8. LatA = [a(ij)](3xx 3). If tr is arithmetic mean of elements of rth row...

    Text Solution

    |

  9. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  10. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  11. LetA= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C(1), C(2), C(...

    Text Solution

    |

  12. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  13. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  14. If A is a symmetric matrix, B is a skew-symmetric matrix, A+B is nonsi...

    Text Solution

    |

  15. Let A be a squarre matrix of order of order 3 satisfies the matrix equ...

    Text Solution

    |

  16. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |