Home
Class 12
MATHS
If the matrix A = [[lambda(1)^(2), lambd...

If the matrix `A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]]` is idempotent,
the value of `lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) given that the matrix \[ A = \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{bmatrix} \] is idempotent, meaning \( A^2 = A \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we perform the matrix multiplication \( A \times A \): \[ A^2 = \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{bmatrix} \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{bmatrix} \] ### Step 2: Compute the elements of \( A^2 \) Calculating the (1,1) element: \[ \lambda_1^2 \cdot \lambda_1^2 + \lambda_1 \lambda_2 \cdot \lambda_2 \lambda_1 + \lambda_1 \lambda_3 \cdot \lambda_3 \lambda_1 = \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_1^2 \lambda_3^2 \] Calculating the (1,2) element: \[ \lambda_1^2 \cdot \lambda_1 \lambda_2 + \lambda_1 \lambda_2 \cdot \lambda_2^2 + \lambda_1 \lambda_3 \cdot \lambda_3 \lambda_2 = \lambda_1^2 \lambda_2 + \lambda_1 \lambda_2^3 + \lambda_1 \lambda_2 \lambda_3^2 \] Calculating the (1,3) element: \[ \lambda_1^2 \cdot \lambda_1 \lambda_3 + \lambda_1 \lambda_2 \cdot \lambda_2 \lambda_3 + \lambda_1 \lambda_3 \cdot \lambda_3^2 = \lambda_1^2 \lambda_3 + \lambda_1 \lambda_2 \lambda_3^2 + \lambda_1 \lambda_3^3 \] Continuing this process for all elements, we can express \( A^2 \) in terms of \( \lambda_1, \lambda_2, \lambda_3 \). ### Step 3: Set \( A^2 = A \) After calculating all elements of \( A^2 \), we equate them to the corresponding elements of \( A \). This will yield a system of equations involving \( \lambda_1, \lambda_2, \lambda_3 \). ### Step 4: Solve the system of equations From the equations obtained, we can derive relationships between \( \lambda_1, \lambda_2, \lambda_3 \). Specifically, we will find that: \[ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = 1 \] ### Conclusion Thus, the value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) is: \[ \boxed{1} \]

To solve the problem, we need to determine the value of \( \lambda_1^2 + \lambda_2^2 + \lambda_3^2 \) given that the matrix \[ A = \begin{bmatrix} \lambda_1^2 & \lambda_1 \lambda_2 & \lambda_1 \lambda_3 \\ \lambda_2 \lambda_1 & \lambda_2^2 & \lambda_2 \lambda_3 \\ \lambda_3 \lambda_1 & \lambda_3 \lambda_2 & \lambda_3^2 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

if mu_21 is 1.5, then find the value of lambda_1/lambda_2.

Transition between three energy energy levels in a particular atom give rise to three Spectral line of wevelength , in increasing magnitudes. lambda_(1), lambda_(2) and lambda_(3) . Which one of the following equations correctly ralates lambda_(1), lambda_(2) and lambda_(3) ? lambda_(1)=lambda_(2)-lambda_(3) lambda_(1)=lambda_(3)-lambda_(2) (1)/(lambda_(1))=(1)/(lambda_(2))+(1)/(lambda_(3)) (1)/(lambda_(2))=(1)/(lambda_(3))+(1)/(lambda_(1))

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}| be an identity in lambda , where p,q,r,s and t are constants. Then, the value of t is..... .

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If the two roots of the equation (lambda-2)(x^2+x+1)^2-(lambda+2)(x^4+x^2+1) are real and equal for lambda=lambda_1,lambda_2 then lambda_1+lambda_2=0 (b) |lambda_1-lambda_2|=6 (c) lambda_1+lambda_2=32 (d) all of these

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda