Home
Class 12
MATHS
Suppose a, b, c, in R and abc = 1, if A...

Suppose `a, b, c, in R ` and `abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]]` is such that `A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, ` the value of `a^(3) + b^(3) + c^(3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the given matrix \( A \) and the conditions provided. ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{bmatrix} 3a & b & c \\ b & 3c & a \\ c & a & 3b \end{bmatrix} \] ### Step 2: Use the property of the transpose We know that \( A^T A = 4^{1/3} I \). The determinant of \( A^T A \) can be expressed as: \[ \text{det}(A^T A) = \text{det}(A)^2 = (4^{1/3})^3 = 4 \] This implies: \[ \text{det}(A)^2 = 4 \implies \text{det}(A) = 2 \quad (\text{since } |A| > 0) \] ### Step 3: Calculate the determinant of \( A \) The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 3a \begin{vmatrix} 3c & a \\ a & 3b \end{vmatrix} - b \begin{vmatrix} b & a \\ c & 3b \end{vmatrix} + c \begin{vmatrix} b & 3c \\ c & a \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 3c & a \\ a & 3b \end{vmatrix} = 9bc - a^2 \) 2. \( \begin{vmatrix} b & a \\ c & 3b \end{vmatrix} = 3b^2 - ac \) 3. \( \begin{vmatrix} b & 3c \\ c & a \end{vmatrix} = ab - 3c^2 \) Putting these back into the determinant: \[ \text{det}(A) = 3a(9bc - a^2) - b(3b^2 - ac) + c(ab - 3c^2) \] Expanding this gives: \[ = 27abc - 3a^3 - 3b^3 + 2abc - 3c^3 \] Combining like terms: \[ = 29abc - 3(a^3 + b^3 + c^3) \] ### Step 4: Set the determinant equal to 2 From Step 2, we have: \[ 29abc - 3(a^3 + b^3 + c^3) = 2 \] Given \( abc = 1 \): \[ 29(1) - 3(a^3 + b^3 + c^3) = 2 \] This simplifies to: \[ 29 - 3(a^3 + b^3 + c^3) = 2 \] ### Step 5: Solve for \( a^3 + b^3 + c^3 \) Rearranging the equation: \[ 3(a^3 + b^3 + c^3) = 29 - 2 \] \[ 3(a^3 + b^3 + c^3) = 27 \] Dividing by 3: \[ a^3 + b^3 + c^3 = 9 \] ### Final Answer The value of \( a^3 + b^3 + c^3 \) is: \[ \boxed{9} \]

To solve the problem step-by-step, we will analyze the given matrix \( A \) and the conditions provided. ### Step 1: Write down the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{bmatrix} 3a & b & c \\ b & 3c & a \\ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

If a+b+c=0, then write the value of a^3+b^3+c^3

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a+ b + c = 0 , show that : a^(3) + b^(3) + c^(3)= 3abc

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

If a+b+c=6 and a b+b c+c a=11 , find the value of a^3+b^3+c^3-3a b c

If a+b+c=15 and a^2+b^2+c^2=83 , find the value of a^3+b^3+c^3-3abc

a, b, c are reals such that a+b+c=3 and 1/(a+b) + 1/(b+c) + 1/ (c+a) = 10/3 . The value of a/(b+c) + b/(c+a) + c/(a+b) is________.

If a+b+c=6\ a n d\ a b+b c+c a=11 , find the value of a^3+b^3+c^3-3a b c