Home
Class 12
MATHS
If A = [[0, 1],[3,0]]and (A^(8) + A^(6) ...

If `A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]],`
where `V` is a vertical vector and `I` is the `2xx2` identity
matrix and if `lambda` is sum of all elements of vertical vector
`V`, the value of `11 lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will calculate the powers of the matrix \( A \) and then substitute these into the equation given in the problem. ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \). ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} (0 \cdot 0 + 1 \cdot 3) & (0 \cdot 1 + 1 \cdot 0) \\ (3 \cdot 0 + 0 \cdot 3) & (3 \cdot 1 + 0 \cdot 0) \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = 3I \] where \( I \) is the identity matrix. ### Step 3: Calculate \( A^4 \) Now, we calculate \( A^4 \) as \( A^2 \cdot A^2 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} 3 \cdot 3 & 0 \\ 0 & 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} = 9I \] ### Step 4: Calculate \( A^6 \) Next, we calculate \( A^6 \) as \( A^4 \cdot A^2 \): \[ A^6 = A^4 \cdot A^2 = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} 9 \cdot 3 & 0 \\ 0 & 9 \cdot 3 \end{pmatrix} = \begin{pmatrix} 27 & 0 \\ 0 & 27 \end{pmatrix} = 27I \] ### Step 5: Calculate \( A^8 \) Now, we calculate \( A^8 \) as \( A^4 \cdot A^4 \): \[ A^8 = A^4 \cdot A^4 = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \cdot \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix} \] Calculating the product: \[ = \begin{pmatrix} 9 \cdot 9 & 0 \\ 0 & 9 \cdot 9 \end{pmatrix} = \begin{pmatrix} 81 & 0 \\ 0 & 81 \end{pmatrix} = 81I \] ### Step 6: Substitute into the Given Equation Now we substitute \( A^2, A^4, A^6, A^8 \) into the equation: \[ A^8 + A^6 + A^4 + A^2 + I = 81I + 27I + 9I + 3I + I \] Calculating the sum: \[ = (81 + 27 + 9 + 3 + 1)I = 121I \] ### Step 7: Set Up the Equation with \( V \) We have: \[ 121I \cdot V = \begin{pmatrix} 0 \\ 11 \end{pmatrix} \] This implies: \[ V = \frac{1}{121} \begin{pmatrix} 0 \\ 11 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{11}{121} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{11} \end{pmatrix} \] ### Step 8: Calculate \( \lambda \) The sum of the elements of vector \( V \) is: \[ \lambda = 0 + \frac{1}{11} = \frac{1}{11} \] ### Step 9: Calculate \( 11\lambda \) Finally, we calculate: \[ 11\lambda = 11 \cdot \frac{1}{11} = 1 \] ### Final Answer The value of \( 11\lambda \) is \( \boxed{1} \).

To solve the problem step by step, we will calculate the powers of the matrix \( A \) and then substitute these into the equation given in the problem. ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \). ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

A=[[0 ,1],[ 3 ,0]]a n d(A^8+A^6+A^4+A^2+I) V=[[0] ,[11]](w h e r eIi s the 2xx2 identity matrix ), then the product of all elements of matrix V is _____.

Let A=[(0,1),(2,0)] and (A^(8)+A^(6)+A^(2)+I)V=[(32),(62)] where I is the (2xx2 identity matrix). Then the product of all elements of matrix V is

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (ii) Find the matrix M.

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

Given [(4,2),(-1,1)] M = 6 I, where M is a matrix and I is the unit matrix or order 2xx2 . (i) State the order of matrix M.

If the lines x - 2y - 6 = 0 , 3x + y - 4=0 and lambda x +4y + lambda^(2) = 0 are concurrent , then value of lambda is

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

A matrix A = ({:(2,3),(5,-2):}) is such that A^(-1)= lambda A then what is the value of lambda .

Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

Let A be a 2 xx 2 matrix with non-zero entries and let A^2=I, where i is a 2 xx 2 identity matrix, Tr(A) i= sum of diagonal elements of A and |A| = determinant of matrix A. Statement 1:Tr(A)=0 Statement 2: |A| =1