Home
Class 12
MATHS
Let the matrix A and B defined as A=|[3,...

Let the matrix A and B defined as `A=|[3,2] , [2,1]|` and `B=|[3,1] , [7,3]|` Then the value of `|det(2A^9 B^(-1)|=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\det(2A^9 B^{-1})|\) given the matrices \(A\) and \(B\). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 7 & 3 \end{pmatrix} \] 2. **Calculate \(\det(A)\)**: The determinant of a \(2 \times 2\) matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is calculated as \(ad - bc\). \[ \det(A) = (3)(1) - (2)(2) = 3 - 4 = -1 \] 3. **Calculate \(\det(B)\)**: Similarly, we calculate the determinant of \(B\): \[ \det(B) = (3)(3) - (1)(7) = 9 - 7 = 2 \] 4. **Use properties of determinants**: We know that for any scalar \(k\) and a matrix \(M\), \(\det(kM) = k^n \det(M)\) where \(n\) is the order of the matrix. Here, \(n = 2\) (since both \(A\) and \(B\) are \(2 \times 2\)). \[ \det(2A) = 2^2 \det(A) = 4 \cdot (-1) = -4 \] 5. **Calculate \(\det(A^9)\)**: Using the property \(\det(M^k) = (\det(M))^k\): \[ \det(A^9) = (\det(A))^9 = (-1)^9 = -1 \] 6. **Calculate \(\det(B^{-1})\)**: The determinant of the inverse of a matrix is the reciprocal of the determinant of the matrix: \[ \det(B^{-1}) = \frac{1}{\det(B)} = \frac{1}{2} \] 7. **Combine the determinants**: Now, we can find the determinant of the product: \[ \det(2A^9 B^{-1}) = \det(2A) \cdot \det(A^9) \cdot \det(B^{-1}) = (-4) \cdot (-1) \cdot \left(\frac{1}{2}\right) \] Simplifying this: \[ \det(2A^9 B^{-1}) = 4 \cdot \frac{1}{2} = 2 \] 8. **Find the absolute value**: Finally, we take the absolute value: \[ |\det(2A^9 B^{-1})| = |2| = 2 \] ### Final Answer: \[ |\det(2A^9 B^{-1})| = 2 \]

To solve the problem, we need to find the value of \(|\det(2A^9 B^{-1})|\) given the matrices \(A\) and \(B\). ### Step-by-Step Solution: 1. **Define the matrices**: \[ A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 7 & 3 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=B^(-1)A^(-1) .

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

Let A be a matrix of order 3xx3 such that |A|=3 . Let B=3A^(-1) and C =(adjA)/(2) , then the value of |A^(2)B^(3)C^(4)| is

Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4 , then the value of det.(BA) is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

Let A be a matrix of order 3 xx 3 such that det ( A)= 2 , B = 2A^(-1) and C = (( adjA))/(root(3)(16)) ,then the value of det(A^(3) B^(2) C^(3)) is

If A=[{:(2,3),(-1,-2):}] and B=sum_(r=1)^(10)A^r , then the value of det (B)is equal to

Find a matrix X such tht 3A-2B+X=0, where A=[[4,2],[1,3]] , B= [[-2,1], [3,2]]

Find matrix B, if matrix A= [(1,5),(1,2)] , matrix C= [(2),(1)] and AB= 3C