Home
Class 12
MATHS
Let A = [[0, alpha],[0,0]] and(A+I)^(70)...

Let `A = [[0, alpha],[0,0]] and(A+I)^(70) - 70 A = [[a-1,b-1],[c-1,d-1]],` the
value of ` a + b + c + d ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((A + I)^{70} - 70A\) and compare it to the matrix \(\begin{bmatrix} a - 1 & b - 1 \\ c - 1 & d - 1 \end{bmatrix}\). ### Step 1: Define the matrices Let \( A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) (the identity matrix). ### Step 2: Calculate \( A + I \) \[ A + I = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \] ### Step 3: Find \( (A + I)^{70} \) To find \((A + I)^{70}\), we can use the binomial theorem: \[ (A + I)^{70} = I^{70} + \binom{70}{1} A I^{69} + \binom{70}{2} A^2 I^{68} + \ldots + A^{70} \] Since \( A^2 = 0 \) (as shown in the video), all terms involving \( A^2 \) or higher powers will be zero. Thus, we only need to consider the first two terms: \[ (A + I)^{70} = I + 70A \] ### Step 4: Substitute back into the equation Now we substitute this back into the expression: \[ (A + I)^{70} - 70A = I \] ### Step 5: Compare with the given matrix We know from the problem statement that: \[ (A + I)^{70} - 70A = \begin{bmatrix} a - 1 & b - 1 \\ c - 1 & d - 1 \end{bmatrix} \] Since we found that \( (A + I)^{70} - 70A = I \), we have: \[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] Thus, we can equate: \[ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a - 1 & b - 1 \\ c - 1 & d - 1 \end{bmatrix} \] ### Step 6: Solve for \( a, b, c, d \) From the above matrices, we can derive the following equations: 1. \( a - 1 = 1 \) → \( a = 2 \) 2. \( b - 1 = 0 \) → \( b = 1 \) 3. \( c - 1 = 0 \) → \( c = 1 \) 4. \( d - 1 = 1 \) → \( d = 2 \) ### Step 7: Calculate \( a + b + c + d \) Now we can find \( a + b + c + d \): \[ a + b + c + d = 2 + 1 + 1 + 2 = 6 \] ### Final Answer Thus, the value of \( a + b + c + d \) is \( \boxed{6} \). ---

To solve the problem, we need to evaluate the expression \((A + I)^{70} - 70A\) and compare it to the matrix \(\begin{bmatrix} a - 1 & b - 1 \\ c - 1 & d - 1 \end{bmatrix}\). ### Step 1: Define the matrices Let \( A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) (the identity matrix). ### Step 2: Calculate \( A + I \) \[ A + I = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,alpha),(0,0)] and (A+I)^(50)=50 A=[(a,b),(c,d)] Then the value of a+b+c+d is (A) 2 (B) 1 (C) 4 (D) none of these

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 (c) 2 (d) 4

If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 (c) 2 (d) 4

Let A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)] then lim_(n to oo) (b + c)/(a + d) =

If A=[(alpha,0), (1, 1)]a n d B=[(1, 0), (5, 1)], find the values of alpha for which A^2=Bdot

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

Let D_1=|[a, b, a+b], [c, d, c+d], [a, b, a-b]| and D_2=|[a, c, a+c], [b, d, b+d], [a, c, a+b+c]| then the value of |(D_1)/(D_2)| , where b!=0 and a d!=b c , is _____.

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (-6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

Let D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c| then the value of |(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c , is _____.