Home
Class 12
MATHS
If A= [[1,-1,-1],[1,-1,0],[1,0,-1]] then...

If `A= [[1,-1,-1],[1,-1,0],[1,0,-1]]` then find transpose of A

Text Solution

AI Generated Solution

The correct Answer is:
To find the transpose of the matrix \( A \), we will follow these steps: Given matrix: \[ A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \] ### Step 1: Identify the dimensions of matrix A Matrix \( A \) has 3 rows and 3 columns. **Hint:** The transpose of a matrix switches its rows and columns. ### Step 2: Write down the elements of the transpose To find the transpose \( A^T \), we will convert the rows of \( A \) into columns. - The first row of \( A \) is \( [1, -1, -1] \), which will become the first column of \( A^T \). - The second row of \( A \) is \( [1, -1, 0] \), which will become the second column of \( A^T \). - The third row of \( A \) is \( [1, 0, -1] \), which will become the third column of \( A^T \). ### Step 3: Construct the transpose matrix Now we can construct the transpose matrix \( A^T \): \[ A^T = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix} \] ### Final Result Thus, the transpose of matrix \( A \) is: \[ A^T = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix} \] ---

To find the transpose of the matrix \( A \), we will follow these steps: Given matrix: \[ A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Matrices Exercise 5 : (Matching Type Questions )|4 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A = [[0 , 1, -1],[4, -3, 4],[3, -3, 4]] find the transpose of A matrix

If A=[[1,0,0],[0,1,0],[a,b,-1]] , find A^2

If A=[[-1, 0 ,0], [0,-1, 0], [0, 0,-1]] , find A^2 .

If A=[[-1, 0, 0], [0,-1, 0], [0, 0,-1]] , find A^3 .

If A= [[1 , 0],[ − 1, 7]] and I=[[1, 0],[ 0 ,1]] , then find k so that A^2=8A+k I

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A=[[3 ,1],[-1 ,2]] and I=[[1, 0],[ 0, 1]] , then find lambda so that A^2=5A+lambdaI

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If A=[[1, 0],[ 0,-1]] and B=[[0 ,1], [1, 0]] , then find AB,BA. Show that 'A B!=B A .

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,-2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]