Home
Class 12
MATHS
If A=[[cos alpha, -sin alpha] , [sin alp...

If `A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta, sin 2beta] , [sin 2 beta, -cos2beta]]` where `0 lt beta lt pi/2` then prove that `BAB=A^(-1)` Also find the least positive value of `alpha` for which `BA^4B= A^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( BAB = A^{-1} \) and to find the least positive value of \( \alpha \) for which \( BA^4B = A^{-1} \), we will follow these steps: ### Step 1: Define the matrices We have: \[ A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \] \[ B = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix} \] ### Step 2: Calculate \( A^{-1} \) The inverse of matrix \( A \) can be calculated as follows: \[ A^{-1} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \] ### Step 3: Calculate \( BA \) Now, we will multiply \( B \) and \( A \): \[ BA = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \] Calculating the product: - First row, first column: \( \cos 2\beta \cos \alpha + \sin 2\beta \sin \alpha = \cos(2\beta - \alpha) \) - First row, second column: \( \cos 2\beta (-\sin \alpha) + \sin 2\beta \cos \alpha = \sin(2\beta - \alpha) \) - Second row, first column: \( \sin 2\beta \cos \alpha + (-\cos 2\beta) \sin \alpha = \sin(2\beta + \alpha) \) - Second row, second column: \( \sin 2\beta (-\sin \alpha) + (-\cos 2\beta) \cos \alpha = -\cos(2\beta + \alpha) \) Thus, \[ BA = \begin{bmatrix} \cos(2\beta - \alpha) & \sin(2\beta - \alpha) \\ \sin(2\beta + \alpha) & -\cos(2\beta + \alpha) \end{bmatrix} \] ### Step 4: Calculate \( BAB \) Next, we multiply \( B \) by \( BA \): \[ BAB = B \cdot (BA) = \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix} \begin{bmatrix} \cos(2\beta - \alpha) & \sin(2\beta - \alpha) \\ \sin(2\beta + \alpha) & -\cos(2\beta + \alpha) \end{bmatrix} \] Calculating this product: - First row, first column: \( \cos 2\beta \cos(2\beta - \alpha) + \sin 2\beta \sin(2\beta + \alpha) = \cos(2\beta - (2\beta - \alpha)) = \cos \alpha \) - First row, second column: \( \cos 2\beta \sin(2\beta - \alpha) + \sin 2\beta (-\cos(2\beta + \alpha)) = -\sin \alpha \) - Second row, first column: \( \sin 2\beta \cos(2\beta - \alpha) + (-\cos 2\beta) \sin(2\beta + \alpha) = \sin \alpha \) - Second row, second column: \( \sin 2\beta \sin(2\beta - \alpha) + (-\cos 2\beta)(-\cos(2\beta + \alpha)) = \cos \alpha \) Thus, \[ BAB = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = A^{-1} \] ### Step 5: Find the least positive value of \( \alpha \) for which \( BA^4B = A^{-1} \) To find \( A^4 \): \[ A^2 = A \cdot A = \begin{bmatrix} \cos^2 \alpha - \sin^2 \alpha & -2\sin \alpha \cos \alpha \\ 2\sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{bmatrix} = \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix} \] \[ A^4 = A^2 \cdot A^2 = \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix} \cdot \begin{bmatrix} \cos 2\alpha & -\sin 2\alpha \\ \sin 2\alpha & \cos 2\alpha \end{bmatrix} = \begin{bmatrix} \cos 4\alpha & -\sin 4\alpha \\ \sin 4\alpha & \cos 4\alpha \end{bmatrix} \] Now, we compute \( BA^4B \): \[ BA^4B = B \cdot A^4 \cdot B \] Following similar steps as above, we will find that: \[ BA^4B = A^{-1} \] This will hold true when \( 4\alpha = \alpha \) (mod \( 2\pi \)), leading to \( 3\alpha = 0 \) (mod \( 2\pi \)). The least positive value of \( \alpha \) is: \[ \alpha = \frac{2\pi}{3} \] ### Summary of Steps 1. Define the matrices \( A \) and \( B \). 2. Calculate \( A^{-1} \). 3. Calculate \( BA \). 4. Calculate \( BAB \) and show it equals \( A^{-1} \). 5. Find \( A^4 \) and compute \( BA^4B \) to find the least positive value of \( \alpha \).

To prove that \( BAB = A^{-1} \) and to find the least positive value of \( \alpha \) for which \( BA^4B = A^{-1} \), we will follow these steps: ### Step 1: Define the matrices We have: \[ A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If cos^2alpha-sin^2alpha=tan^2beta," then prove that "tan^2alpha=cos^2beta-sin^2beta .

If sin beta is the GM between sin alpha and cos alpha, then cos 2beta=

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)] and B=[(cos^(2)betas,cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is null matrix, then alpha-beta is