Home
Class 12
MATHS
By the method of matrix inversion, solve...

By the method of matrix inversion, solve the system.
`[(1,1,1),(2,5,7),(2,1,-1)][(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(9,2),(52,15),(0,-1)]`

Text Solution

Verified by Experts

The correct Answer is:
`x- 1, u =-1, y = 3, v= 2, z=5, w = 1`

We have, `[[1,1,1],[2,5,7],[2,1,-7]][[x,u],[y,v],[x,omega]][[9,2],[52,15],[0,-1]]`
or `AX = B`
or ` X = a^(-1) B` …(i)
Where, `A= [[1,1,1],[2,5,7],[2,1,-7]],X=[[x,u],[y,v],[x,omega]]and B=[[9,2],[52,15],[0,-1]]`
`therefore abs(A) = (-5-7)-1(-2-14)+1(2-10)`
` = -12+16-8=-4ne0`
Let C be the matrix of cofactors of elements of `abs(A)`.
`therefore C=[[C_(11),C_(12),C_(13)],[C_(21),C_(22),C_(23)],[C_(31),C_(32),C_(33)]]`
`=[[abs([5,7],[1,-1]),-abs((2,7),(2,-1)),abs((2,5),(2,1))],[-abs((1,1),(1,-1)),abs((1,1),(2,-1)),-abs((1,1),(2,1))],[abs((1,1),(5,7)),-abs((1,1),(2,7)),abs((1,1),(2,5))]]`
`= [[-12,2,2],[16,-3,-5],[-8,1,3]]`
`therefore" adj "A = C'= [[-12,2,2],[16,-3,-5],[-8,1,3]]`
`therefore" "A^(-1)=("adj "A)/abs(A) =-1/4 [[-12,2,2],[16,-3,-5],[-8,1,3]]`
Now, `therefore" "A^(-1)B =-1/4 [[-12,2,2],[16,-3,-5],[-8,1,3]]xx[[9,2],[52,15],[0,-1]]`
`= -1/4 [[-4,4],[-12,-8],[-20,-4]]= [[1,-1],[3,2],[5,1]]`
From Eq. (i) `X=A^(-1) B`
`rArr [[x,u],[y,v],[z,w]]=[[1,-1],[3,2],[5,1]]`
on equating the corresponding elements, we have
`x =1, u = -1`
`y = 3, v=2`
` z = 5, w= 1`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Using matrix method solve the equations {:(x+2y=5),(3x-2y=-1):}

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals