Home
Class 12
MATHS
If x(1) = 3y(1) + 2y(2) -y(3), " " y(1)...

If `x_(1) = 3y_(1) + 2y_(2) -y_(3), " " y_(1)=z_(1) - z_(2) + z_(3)`
`x_(2) = -y_(1) + 4y_(2) + 5y_(3), y_(2)= z_(2) + 3z_(3)`
`x_( 3)= y_(1) -y_(2) + 3y_(3)," " y_(3) = 2z_(1) + z_(2)`
espress `x_(1), x_(2), x_(3)` in terms of `z_(1) ,z_(2),z_(3)`.

Text Solution

Verified by Experts

The correct Answer is:
`x_(1) = z_(1) -2z_(2) + 9 z_(3) , x_(2) = 9z_(1) + 10 z_(2) +11 z_(3) , x_(3) = 7 z_(1) + z_(2) - 2z_(3)`

Since, ` X_(1) = 3y_(1) + 2y_(2) - y_(3)`
`rArr [x_(1)] = [(3,2,-1)] [[y_(1)],[y_(2)],[y_(3)]]`
Putting the values of `y_(1), y_(2), y_(3), ` we get
`[x_(1)] = [(3,2,-1)] [[z_(1)-z_(2)+z_(3)],[0+z_(2)+3z_(3)],[2z_(1)+z_(2)+0]]`
`= [(3,2,-1)] [[1,-1,1],[0,1,3],[2,1,0]][[z_(1)],[z_(2)],[z_(3)]]`
`=[(3+0-2,-3+2-1,3+6+0)][[z_(1)],[z_(2)],[z_(3)]]`
`=[(1,-2,9)][[z_(1)],[z_(2)],[z_(3)]]`
`[x_(1)]= [z_(1)-2z_(2)+9z_(3)]`
`therefore x_(1) = z_(1) - 2x_(2) + 9z_(3) " "...(i)`
Further, `x_(2) = -y_(1) + 4y_(2) + 5y_(3) `
`rArr [x_(2)] = [(-1, 4,5)][[y_(1)],[y_(2)],[y_(3)]]`
Putting the values of `y_(1),y_(2),y_(3)`, we get
`[x_(2)] = [(-1, 4,5)][[z_(1)-z_(2)+z_(3)],[0+z_(2)+3z_(3)],[2z_(1)+z_(2)+0]]`
` = [(-1, 4,5)][[1,-1,1],[0,1,3],[2,1,0]][[z_(1)],[z_(2)],[z_(3)]]`
` = [(-1+0+10, 1+4+5,-1+12+0)][[z_(1)],[z_(2)],[z_(3)]]`
` = [(9,10,11)][[z_(1)],[z_(2)],[z_(3)]]=[9z_(1)+10z_(2)+11z_(3)]`
Hence, `x_(2)=9z_(1)=10z_(2)+11z_(3)` ...(ii)
Further, `X_(3) = y_(1)-y_(2)+2y_(3)`
therefore [x_(3)] = [(1,-1 ,3)][[y_(1)],[y_(2)],[y_(3)]]
Putting the values of `y_(1), y_(2), y_(3)` we get
`rArr [x_(3)] = [(1, -1,3)][[z_(1)-z_(2)+z_(3)],[0+z_(2)+3z_(3)],[2z_(1)+z_(2)+0]]`
`= [(1,-1,3)][[1,-1,1],[0,1,3],[2,1,0]][[z_(1)],[z_(2)],[z_(3)]]`
`= [(1-0+6,-1-1+3,1-3+0)][[z_(1)],[z_(2)],[z_(3)]]`
`= [(7,1,-2)][[z_(1)],[z_(2)],[z_(3)]]=[7z_(1)+z_(2)-2z_(3)]`
`therefore x_(3) = 7z_(1)+z_(2)-2z_(3)` ...(iii)
Hence , from Eqs. (i), (ii) and (iii) we get
`x_(1) =z_(1) - 2z_(2) + 9 z_(3) , x_(2) = 9z_(1)+10z_(2) + 11z_(3), x_(3)=7z_(1)+z_(2)-2z_(3)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

The lines (x-1)/(3) = (y+1)/(2) = (z-1)/(5) and x= (y-1)/(3) = (z+1)/(-2)

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

The angle between the lines (x+4)/(1) = (y-3)/(2) = (z+2)/(3) and (x)/(3) = (y)/(-2) = (z)/(1) is

If a x_1^2+b y_1^2+c z_1^2=a x_2 ^2+b y_2 ^2+c z_2 ^2=a x_3 ^2+b y_3 ^2+c z_3 ^2=d ,a x_2 x_3+b y_2y_3+c z_2z_3=a x_3x_1+b y_3y_1+c z_3z_1=a x_1x_2+b y_1y_2+c z_1z_2=f, then prove that |(x_1, y_1, z_1), (x_2, y_2, z_2), (x_3,y_3,z_3)|=(d-f){((d+2f))/(a b c)}^(1//2)

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^(-1) .