Home
Class 12
MATHS
Let alpha , beta , gamma parametric ang...

Let `alpha , beta , gamma ` parametric angles of 3 points P,Q and R respectively lying on `x^(2)+y^(2)=1 `. If the length of chords AP, PQ and AR are in GP where A is (-1,0), then `[Given , alpha , beta ,gamma in (0,2pi)]`.

A

`sin""(alpha + gamma)/(4) cos""(alpha -gamma)/(4) ge sin""(beta)/(2)`

B

`sin((alpha + gamma)/(4)) cos((alpha -gamma)/(4)) le sin(beta)/(2)`

C

`sin""(alpha )/(2) sin""(gamma)/(2) ge sin""(beta)/(2)`

D

`sin""(alpha )/(2) sin""(gamma)/(2) le sin""(beta)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the lengths of the chords \( AP \), \( PQ \), and \( AR \) and show that they are in geometric progression (GP). The points \( P \), \( Q \), and \( R \) lie on the unit circle defined by the equation \( x^2 + y^2 = 1 \). The point \( A \) is given as \( (-1, 0) \). ### Step 1: Define the Points Let: - Point \( P \) be represented by the parametric coordinates \( P(\cos \alpha, \sin \alpha) \) - Point \( Q \) be represented by the parametric coordinates \( Q(\cos \beta, \sin \beta) \) - Point \( R \) be represented by the parametric coordinates \( R(\cos \gamma, \sin \gamma) \) ### Step 2: Calculate the Length of Chord \( AP \) The length of chord \( AP \) can be calculated using the distance formula: \[ AP = \sqrt{(\cos \alpha + 1)^2 + (\sin \alpha - 0)^2} \] This simplifies to: \[ AP = \sqrt{(\cos \alpha + 1)^2 + \sin^2 \alpha} \] Expanding this, we have: \[ AP = \sqrt{\cos^2 \alpha + 2\cos \alpha + 1 + \sin^2 \alpha} \] Using the Pythagorean identity \( \sin^2 \alpha + \cos^2 \alpha = 1 \): \[ AP = \sqrt{1 + 2\cos \alpha + 1} = \sqrt{2 + 2\cos \alpha} = \sqrt{2(1 + \cos \alpha)} = 2\cos\left(\frac{\alpha}{2}\right) \] ### Step 3: Calculate the Length of Chord \( AQ \) Similarly, for chord \( AQ \): \[ AQ = \sqrt{(\cos \beta + 1)^2 + (\sin \beta - 0)^2} \] Following the same steps: \[ AQ = \sqrt{2 + 2\cos \beta} = 2\cos\left(\frac{\beta}{2}\right) \] ### Step 4: Calculate the Length of Chord \( AR \) For chord \( AR \): \[ AR = \sqrt{(\cos \gamma + 1)^2 + (\sin \gamma - 0)^2} \] Again, following the same steps: \[ AR = \sqrt{2 + 2\cos \gamma} = 2\cos\left(\frac{\gamma}{2}\right) \] ### Step 5: Establish the Condition for GP Since \( AP \), \( AQ \), and \( AR \) are in GP, we have: \[ AQ^2 = AP \cdot AR \] Substituting the values we found: \[ (2\cos\left(\frac{\beta}{2}\right))^2 = (2\cos\left(\frac{\alpha}{2}\right))(2\cos\left(\frac{\gamma}{2}\right)) \] This simplifies to: \[ 4\cos^2\left(\frac{\beta}{2}\right) = 4\cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\gamma}{2}\right) \] Dividing both sides by 4: \[ \cos^2\left(\frac{\beta}{2}\right) = \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\gamma}{2}\right) \] ### Final Condition Thus, the condition for the lengths of the chords \( AP \), \( AQ \), and \( AR \) to be in GP is: \[ \cos^2\left(\frac{\beta}{2}\right) = \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\gamma}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

alpha,beta and gamma are parametric angles of three points P, Q and R respectively, on the circle x^2 + y^2 = 1 and A is the point (-1, 0). If the lengths of the chords AP, AQ and AR are in GP, then cos alpha/2, cos beta/2 and cos gamma/2 are in

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha, beta, gamma are the roiots of x^(3) - 10x^(2) +6x - 8 = 0 then alpha^(2) + beta^(2) + gamma^(2) =

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

Vector vecP angle alpha,beta and gamma with the x,y and z axes respectively. Then sin^(2)alpha+sin^(2)beta+sin^(2)gamma=

If alpha, beta and gamma are three consecutive terms of a non-constant G.P. such that the equations ax^(2) + 2beta x + gamma = 0 and x^(2) + x - 1= 0 have a common root, then alpha (beta + gamma) is equal to

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

Given that alpha , gamma are roots of the equation Ax^(2)-4x+1=0 and beta , delta are roots of the equation Bx^(2)-6x+1=0 . If alpha , beta , gamma and delta are in H.P. , then

If alpha , beta , gamma are roots of the equation x^3 + ax^2 + bx +c=0 then alpha^(-1) + beta^(-1) + gamma^(-1) =

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (More Than One Correct Option Type Questions)
  1. Find the value of t which satisfies (t-[|sin x|])! = 3!5!7! w h e r e[...

    Text Solution

    |

  2. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  3. Let alpha , beta , gamma parametric angles of 3 points P,Q and R resp...

    Text Solution

    |

  4. Let x, y, z be elements from interval [0,2pi] satisfying the inequal...

    Text Solution

    |

  5. The number of integral values of a for which the system of linear equa...

    Text Solution

    |

  6. The equation 2 sin^(3) theta+(2 lambda-3) sin^(2) theta-(3 lambda+2) s...

    Text Solution

    |

  7. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  8. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  9. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  10. If x+y=(4pi)/(3) and sin x = 2 sin y , then

    Text Solution

    |

  11. The number of solutions of the equations y=1/3[sin theta+[sin theta +[...

    Text Solution

    |

  12. If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi], (where ,[.] denotes th ...

    Text Solution

    |

  13. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  14. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  15. Find the number of solution of theta in [0,2pi] satisfying the equatio...

    Text Solution

    |

  16. If alpha and beta are the solution of a cos theta + b sin theta = c...

    Text Solution

    |

  17. The solution of the equation sin 2x + sin 4x = 2 sin 3x is

    Text Solution

    |

  18. One of the general solutions of 4 sin^(4) x+cos^(4) x=1 is

    Text Solution

    |

  19. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  20. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |