Home
Class 12
MATHS
Let x, y, z be elements from interval [...

Let x, y, z be elements from interval `[0,2pi] ` satisfying the inequality ` (4+ sin 4 x )(2+ cot^(2) y)(1+ sin^(4) z) le 12 sin^(2) z ` , then

A

the number of ordered pairs (x,y) is 5

B

the number of ordered pairs (y,z) is 8

C

the number of ordered pairs (z,x) is 8

D

the number of pairs (y,z) such that z=y is 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( (4 + \sin 4x)(2 + \cot^2 y)(1 + \sin^4 z) \leq 12 \sin^2 z \), we will analyze each component of the inequality step by step. ### Step 1: Analyze the components of the inequality 1. **Understanding the range of \( \sin 4x \)**: - The function \( \sin 4x \) oscillates between -1 and 1. - Therefore, \( 4 + \sin 4x \) will oscillate between \( 4 - 1 = 3 \) and \( 4 + 1 = 5 \). - Thus, we have: \[ 3 \leq 4 + \sin 4x \leq 5 \] 2. **Understanding the range of \( \cot^2 y \)**: - The function \( \cot^2 y \) is non-negative and approaches infinity as \( y \) approaches \( 0 \) or \( \pi \). - Therefore, \( 2 + \cot^2 y \) is always greater than or equal to 2: \[ 2 \leq 2 + \cot^2 y \] 3. **Understanding the range of \( \sin^4 z \)**: - The function \( \sin^4 z \) oscillates between 0 and 1. - Therefore, \( 1 + \sin^4 z \) will oscillate between 1 and 2: \[ 1 \leq 1 + \sin^4 z \leq 2 \] ### Step 2: Combine the inequalities Now, we can combine these inequalities into the original inequality: \[ (4 + \sin 4x)(2 + \cot^2 y)(1 + \sin^4 z) \leq 12 \sin^2 z \] Using the lower bounds, we have: \[ 3 \cdot 2 \cdot 1 \leq 12 \sin^2 z \] This simplifies to: \[ 6 \leq 12 \sin^2 z \] Dividing both sides by 12 gives: \[ \frac{1}{2} \leq \sin^2 z \] Thus, we find: \[ \sin z \geq \frac{\sqrt{2}}{2} \quad \text{or} \quad \sin z \leq -\frac{\sqrt{2}}{2} \] ### Step 3: Determine the values of \( z \) The solutions for \( z \) in the interval \([0, 2\pi]\) are: - For \( \sin z \geq \frac{\sqrt{2}}{2} \): - \( z = \frac{\pi}{4}, \frac{3\pi}{4} \) (in the first and second quadrants) - For \( \sin z \leq -\frac{\sqrt{2}}{2} \): - \( z = \frac{5\pi}{4}, \frac{7\pi}{4} \) (in the third and fourth quadrants) Thus, the possible values of \( z \) are: \[ z = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \] ### Step 4: Determine the values of \( y \) From the inequality \( \cot^2 y = 0 \), we find: \[ y = \frac{\pi}{2}, \frac{3\pi}{2} \] ### Step 5: Determine the values of \( x \) From \( \sin 4x = -1 \): \[ 4x = \frac{3\pi}{2} + 2k\pi \quad \text{for } k \in \mathbb{Z} \] This gives: \[ x = \frac{3\pi}{8} + \frac{k\pi}{2} \quad \text{for } k = 0, 1, 2, 3 \] The valid values of \( x \) in the interval \([0, 2\pi]\) are: - \( x = \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8} \) ### Step 6: Count the ordered pairs 1. **Ordered pairs \( (x, y) \)**: - \( x \) has 4 values and \( y \) has 2 values: - Total pairs: \( 4 \times 2 = 8 \) 2. **Ordered pairs \( (y, z) \)**: - \( y \) has 2 values and \( z \) has 4 values: - Total pairs: \( 2 \times 4 = 8 \) 3. **Ordered pairs \( (x, z) \)**: - \( x \) has 4 values and \( z \) has 4 values: - Total pairs: \( 4 \times 4 = 16 \) 4. **Pairs \( (y, z) \) such that \( z = y \)**: - The only valid pairs are \( (y, z) = \left(\frac{\pi}{2}, \frac{\pi}{2}\right) \) and \( \left(\frac{3\pi}{2}, \frac{3\pi}{2}\right) \). - Total pairs: 2 ### Final Results - Number of ordered pairs \( (x, y) \): 8 - Number of ordered pairs \( (y, z) \): 8 - Number of ordered pairs \( (x, z) \): 16 - Number of pairs \( (y, z) \) such that \( z = y \): 2
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If x+y=(4pi)/(3) and sin x = 2 sin y , then

All the pairs (x, y) that satisfy the inequality 2 ^(sqrt(sin^(2) x - 2 sin x + 5) ) . (1)/(4 ^(sin^(2) y)) le 1 also satisfy the equation :

The number of orded 4-tuples (x,y,z,w) where x,y,z,w in[0,10] which satisfy the inequality 2^(sin^(2)x)xx3^(cos^(2)y)xx4^(sin^(2)z)xx5^(cos^(2)w)ge120, is

If x=Sin 1, y = Sin 2, z= Sin 3 then

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

Solve the system of equations tan^2 x + cot^(2) x = 2cos^(2)y cos^(2)y+sin^(2)z=1

The number of integral solutions of the inequation x+y+z le 100, (x ge 2, y ge 3, z ge 4) , is

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2

Prove that sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (More Than One Correct Option Type Questions)
  1. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  2. Let alpha , beta , gamma parametric angles of 3 points P,Q and R resp...

    Text Solution

    |

  3. Let x, y, z be elements from interval [0,2pi] satisfying the inequal...

    Text Solution

    |

  4. The number of integral values of a for which the system of linear equa...

    Text Solution

    |

  5. The equation 2 sin^(3) theta+(2 lambda-3) sin^(2) theta-(3 lambda+2) s...

    Text Solution

    |

  6. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  7. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  8. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  9. If x+y=(4pi)/(3) and sin x = 2 sin y , then

    Text Solution

    |

  10. The number of solutions of the equations y=1/3[sin theta+[sin theta +[...

    Text Solution

    |

  11. If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi], (where ,[.] denotes th ...

    Text Solution

    |

  12. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  13. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  14. Find the number of solution of theta in [0,2pi] satisfying the equatio...

    Text Solution

    |

  15. If alpha and beta are the solution of a cos theta + b sin theta = c...

    Text Solution

    |

  16. The solution of the equation sin 2x + sin 4x = 2 sin 3x is

    Text Solution

    |

  17. One of the general solutions of 4 sin^(4) x+cos^(4) x=1 is

    Text Solution

    |

  18. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  19. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  20. The values of alpha for which the equation alpha^2/(1-tan^2x)=(sin^2...

    Text Solution

    |