Home
Class 12
MATHS
If x+y=(4pi)/(3) and sin x = 2 sin y , ...

If ` x+y=(4pi)/(3) and sin x = 2 sin y` , then

A

(a)` x=npi +(pi)/(2), n in I `

B

(b)`y=(5pi)/(6)-npi, n in I `

C

(c)Both (a) and (b)

D

(d)None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( x + y = \frac{4\pi}{3} \) 2. \( \sin x = 2 \sin y \) We need to find the values of \( x \) and \( y \). ### Step 1: Express \( y \) in terms of \( x \) From the first equation, we can express \( y \) as: \[ y = \frac{4\pi}{3} - x \] ### Step 2: Substitute \( y \) into the second equation Now, we substitute \( y \) into the second equation: \[ \sin x = 2 \sin\left(\frac{4\pi}{3} - x\right) \] ### Step 3: Use the sine subtraction formula Using the sine subtraction formula, \( \sin(a - b) = \sin a \cos b - \cos a \sin b \), we can rewrite the equation: \[ \sin\left(\frac{4\pi}{3} - x\right) = \sin\left(\frac{4\pi}{3}\right) \cos x - \cos\left(\frac{4\pi}{3}\right) \sin x \] We know: \[ \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}, \quad \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \] Substituting these values gives: \[ \sin\left(\frac{4\pi}{3} - x\right) = -\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] ### Step 4: Substitute back into the equation Now substituting this back into our equation: \[ \sin x = 2\left(-\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x\right) \] This simplifies to: \[ \sin x = -\sqrt{3} \cos x + \sin x \] ### Step 5: Rearranging the equation Rearranging gives: \[ \sin x + \sqrt{3} \cos x = \sin x \] This simplifies to: \[ \sqrt{3} \cos x = 0 \] ### Step 6: Solve for \( x \) The equation \( \sqrt{3} \cos x = 0 \) implies: \[ \cos x = 0 \] The solutions for \( x \) are: \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 7: Find \( y \) Substituting \( x \) back into the equation for \( y \): \[ y = \frac{4\pi}{3} - \left(\frac{\pi}{2} + n\pi\right) \] This simplifies to: \[ y = \frac{4\pi}{3} - \frac{\pi}{2} - n\pi \] Finding a common denominator (which is 6): \[ y = \frac{8\pi}{6} - \frac{3\pi}{6} - n\pi = \frac{5\pi}{6} - n\pi \] ### Final Solutions Thus, we have: \[ x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] \[ y = \frac{5\pi}{6} - n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If x+y=2pi//3 and sin x//sin y=2 , then the

If x+y=2pi//3 and sin x//sin y=2 , then the general solution for x and y

If x, y in [0, 2pi] and sin x + sin y=2 , then the value of x+y is

Let x and y, (0 lt x, y lt pi/2) satisfy 3sin^(2)x + 2sin^(2)y=1 and 3sin2x = 2sin2y , then the value of 232/pi (x+2y) is……………

If 0 le x, y le pi "and sin"x + "sin" y = 2, "then"x + y =

If y=(sin x) ^(sin x ^sin x ....oo) then prove that dy/dx=(y^2 cot x)/(1-y log (sin x))

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

Let y=y(x) be the solution of the differential equation, xy'-y=x^(2)(x cos x+sin x) If y(pi)=pi, then y'((pi)/(2))+y((pi)/(2)) is equal to :

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (More Than One Correct Option Type Questions)
  1. The equation 2 sin^(3) theta+(2 lambda-3) sin^(2) theta-(3 lambda+2) s...

    Text Solution

    |

  2. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  3. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  4. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  5. If x+y=(4pi)/(3) and sin x = 2 sin y , then

    Text Solution

    |

  6. The number of solutions of the equations y=1/3[sin theta+[sin theta +[...

    Text Solution

    |

  7. If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi], (where ,[.] denotes th ...

    Text Solution

    |

  8. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  9. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  10. Find the number of solution of theta in [0,2pi] satisfying the equatio...

    Text Solution

    |

  11. If alpha and beta are the solution of a cos theta + b sin theta = c...

    Text Solution

    |

  12. The solution of the equation sin 2x + sin 4x = 2 sin 3x is

    Text Solution

    |

  13. One of the general solutions of 4 sin^(4) x+cos^(4) x=1 is

    Text Solution

    |

  14. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  15. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  16. The values of alpha for which the equation alpha^2/(1-tan^2x)=(sin^2...

    Text Solution

    |

  17. For which values of a does the equation 4sin(x+pi/3)cos(x-pi/6)=a^2+sq...

    Text Solution

    |

  18. Which of the following is/are correct?

    Text Solution

    |

  19. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  20. If [x] dnote the greatest integer less than or equal to x then the equ...

    Text Solution

    |