Home
Class 12
MATHS
The value of x , 0 le x le (pi)/2 which...

The value of x ` , 0 le x le (pi)/2` which satisfy the equation ` 81^( sin^(2)x)+81^(cos^(2)x)=30 ` are

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(7pi)/(18)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 81^{\sin^2 x} + 81^{\cos^2 x} = 30 \) for \( x \) in the interval \( [0, \frac{\pi}{2}] \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 81^{\sin^2 x} + 81^{\cos^2 x} = 30 \] Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can rewrite \( 81^{\cos^2 x} \) as \( 81^{1 - \sin^2 x} \): \[ 81^{\sin^2 x} + 81^{1 - \sin^2 x} = 30 \] ### Step 2: Substitute \( t = 81^{\sin^2 x} \) Let \( t = 81^{\sin^2 x} \). Then, \( 81^{\cos^2 x} = \frac{81}{t} \) (since \( 81^{\cos^2 x} = 81^{1 - \sin^2 x} = \frac{81^{\sin^2 x}}{81^{\sin^2 x}} \cdot 81 \)). Substituting this into the equation gives: \[ t + \frac{81}{t} = 30 \] ### Step 3: Multiply through by \( t \) To eliminate the fraction, multiply through by \( t \): \[ t^2 + 81 = 30t \] Rearranging this gives: \[ t^2 - 30t + 81 = 0 \] ### Step 4: Solve the quadratic equation Now we can solve the quadratic equation \( t^2 - 30t + 81 = 0 \) using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -30, c = 81 \): \[ t = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 1 \cdot 81}}{2 \cdot 1} \] Calculating the discriminant: \[ t = \frac{30 \pm \sqrt{900 - 324}}{2} = \frac{30 \pm \sqrt{576}}{2} = \frac{30 \pm 24}{2} \] This gives us two solutions: \[ t_1 = \frac{54}{2} = 27 \quad \text{and} \quad t_2 = \frac{6}{2} = 3 \] ### Step 5: Relate \( t \) back to \( x \) Recall that \( t = 81^{\sin^2 x} \). We have: 1. \( 81^{\sin^2 x} = 27 \) 2. \( 81^{\sin^2 x} = 3 \) #### For \( t_1 = 27 \): \[ 81^{\sin^2 x} = 3^3 \implies 3^{4\sin^2 x} = 3^3 \implies 4\sin^2 x = 3 \implies \sin^2 x = \frac{3}{4} \implies \sin x = \frac{\sqrt{3}}{2} \] Thus, \( x = \frac{\pi}{3} \). #### For \( t_2 = 3 \): \[ 81^{\sin^2 x} = 3^1 \implies 3^{4\sin^2 x} = 3^1 \implies 4\sin^2 x = 1 \implies \sin^2 x = \frac{1}{4} \implies \sin x = \frac{1}{2} \] Thus, \( x = \frac{\pi}{6} \). ### Final Step: Conclusion The values of \( x \) that satisfy the original equation in the interval \( [0, \frac{\pi}{2}] \) are: \[ x = \frac{\pi}{3} \quad \text{and} \quad x = \frac{\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|60 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 12 : Question Asked in Previous Years Exam|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

Number of values of x in(-2pi,2pi) satisfying the equation 2^(sin^(2)x) +4. 2^(cos^(2)x) = 6 is

If x in [0,2pi] then the number of solution of the equation 81^(sin^2x)+81^(cos^2x)=30

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

No. of solutions of 16^(sin^2x)+16^(cos^2x)=10, 0 le x le 2 pi is

The number of values of x which satify the equation cos^(2)x =1 and x^(2) le 20 are _________

The number of values of x in [0,2pi] satisfying the equation |cos x – sin x| >= sqrt2 is

Find the values of x which satisfy the inequation: -2le 1/2 - 2x le 1 5/6 , x epsilon N

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise (More Than One Correct Option Type Questions)
  1. The equation 2 sin^(3) theta+(2 lambda-3) sin^(2) theta-(3 lambda+2) s...

    Text Solution

    |

  2. If x+y=2pi//3 and sin x//sin y=2, then the

    Text Solution

    |

  3. If 0 lt x lt 2 pi and |cos x| le sin x, then

    Text Solution

    |

  4. If xa n dy are positive acute angles such that (x+y) and (x-y) satisfy...

    Text Solution

    |

  5. If x+y=(4pi)/(3) and sin x = 2 sin y , then

    Text Solution

    |

  6. The number of solutions of the equations y=1/3[sin theta+[sin theta +[...

    Text Solution

    |

  7. If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi], (where ,[.] denotes th ...

    Text Solution

    |

  8. If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(co...

    Text Solution

    |

  9. The number of value of alpha in the interval [-pi,0] satisfying sin...

    Text Solution

    |

  10. Find the number of solution of theta in [0,2pi] satisfying the equatio...

    Text Solution

    |

  11. If alpha and beta are the solution of a cos theta + b sin theta = c...

    Text Solution

    |

  12. The solution of the equation sin 2x + sin 4x = 2 sin 3x is

    Text Solution

    |

  13. One of the general solutions of 4 sin^(4) x+cos^(4) x=1 is

    Text Solution

    |

  14. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  15. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  16. The values of alpha for which the equation alpha^2/(1-tan^2x)=(sin^2...

    Text Solution

    |

  17. For which values of a does the equation 4sin(x+pi/3)cos(x-pi/6)=a^2+sq...

    Text Solution

    |

  18. Which of the following is/are correct?

    Text Solution

    |

  19. If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)...

    Text Solution

    |

  20. If [x] dnote the greatest integer less than or equal to x then the equ...

    Text Solution

    |