Home
Class 12
MATHS
Let alpha,beta "and " gamma are three di...

Let `alpha,beta "and " gamma` are three distinct roots of
`|{:(x-1,-6,2),(-6,x-2,-4),(2,-4,x-6):}|` =0 the value of `((1)/(alpha)+(1)/(beta)+(1)/(gamma))^(-1)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \left( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right)^{-1} \) where \( \alpha, \beta, \gamma \) are the distinct roots of the determinant equation given by: \[ \begin{vmatrix} x - 1 & -6 & 2 \\ -6 & x - 2 & -4 \\ 2 & -4 & x - 6 \end{vmatrix} = 0 \] ### Step 1: Calculate the Determinant We will calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Where \( a, b, c, d, e, f, g, h, i \) are the elements of the matrix. Here, we can expand the determinant as follows: \[ \text{Det} = (x - 1) \begin{vmatrix} x - 2 & -4 \\ -4 & x - 6 \end{vmatrix} - (-6) \begin{vmatrix} -6 & -4 \\ 2 & x - 6 \end{vmatrix} + 2 \begin{vmatrix} -6 & x - 2 \\ 2 & -4 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} x - 2 & -4 \\ -4 & x - 6 \end{vmatrix} = (x - 2)(x - 6) - (-4)(-4) = (x^2 - 8x + 12 - 16) = x^2 - 8x - 4 \) 2. \( \begin{vmatrix} -6 & -4 \\ 2 & x - 6 \end{vmatrix} = (-6)(x - 6) - (-4)(2) = -6x + 36 + 8 = -6x + 44 \) 3. \( \begin{vmatrix} -6 & x - 2 \\ 2 & -4 \end{vmatrix} = (-6)(-4) - (x - 2)(2) = 24 - (2x - 4) = 28 - 2x \) Now substituting back into the determinant: \[ \text{Det} = (x - 1)(x^2 - 8x - 4) + 6(-6x + 44) + 2(28 - 2x) \] ### Step 2: Expand and Simplify Expanding the determinant: \[ = (x^3 - 8x^2 - 4x - x^2 + 8x + 4) + (-36x + 264) + (56 - 4x) \] Combining like terms: \[ = x^3 - 9x^2 - 36x + 324 = 0 \] ### Step 3: Find the Roots Using Vieta's formulas, we know: - \( \alpha + \beta + \gamma = -\frac{-9}{1} = 9 \) - \( \alpha\beta + \beta\gamma + \gamma\alpha = -\frac{-36}{1} = 36 \) - \( \alpha\beta\gamma = -\frac{-324}{1} = 324 \) ### Step 4: Calculate \( \left( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right)^{-1} \) We know that: \[ \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \gamma\alpha + \alpha\beta}{\alpha\beta\gamma} \] Substituting the values we found: \[ = \frac{36}{324} = \frac{1}{9} \] Thus, \[ \left( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right)^{-1} = 9 \] ### Final Answer The value of \( \left( \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} \right)^{-1} \) is \( \boxed{9} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is

If alpha, beta and gamma are three ral roots of the equatin x ^(3) -6x ^(2)+5x-1 =0, then the value of alpha ^(4) + beta ^(4) + gamma ^(4) is:

If alpha,beta and gamma are roots of equation x^(3)-3x^(2)+1=0 , then the value of ((alpha)/(1+alpha))^(3)+((beta)/(1+beta))^(3)+((gamma)/(1+gamma))^(3) is __________.

If alpha , beta , gamma are the roots of x^3 + 3x^2 -4x +2=0 then the equation whose roots are (1)/( alpha beta) ,(1)/( beta gamma) ,(1)/( gamma alpha) is

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to (a) -5 b. -6 c. -7 d. -2

If alpha , beta , gamma are the roots of x^3 -px^2 +qx -r=0 and r ne 0 then find (1)/( alpha^2) +(1)/( beta^2) +(1)/( gamma ^2) in terms of p,q ,r

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

if alpha, beta, gamma are the roots of x^(3) + x^(2)+x + 9=0 , then find the equation whose roots are (alpha +1)/(alpha -1) , (beta+1)/(beta -1), (gamma+1)/(gamma -1)

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :