Home
Class 12
MATHS
If 0lt=thetalt=pi and the system of equa...

If `0lt=thetalt=pi` and the system of equations
`x=(sin theta)y+(cos theta)z`
`y=z+(cos theta) x`
`z=(sin theta) x+y`
has a non-trivial solution then `(8theta)/(pi)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations for a non-trivial solution, we will follow these steps: ### Step 1: Write the system of equations The given equations are: 1. \( x = \sin(\theta)y + \cos(\theta)z \) 2. \( y = z + \cos(\theta)x \) 3. \( z = \sin(\theta)x + y \) ### Step 2: Rearrange the equations We can rearrange these equations to express them in a standard form: 1. \( -\sin(\theta)y - \cos(\theta)z + x = 0 \) 2. \( -\cos(\theta)x + y - z = 0 \) 3. \( -\sin(\theta)x - y + z = 0 \) ### Step 3: Form the coefficient matrix The coefficient matrix \( A \) for the system can be written as: \[ A = \begin{pmatrix} 1 & -\sin(\theta) & -\cos(\theta) \\ -\cos(\theta) & 1 & -1 \\ -\sin(\theta) & -1 & 1 \end{pmatrix} \] ### Step 4: Find the determinant of the matrix To find a non-trivial solution, we need to set the determinant of the matrix \( A \) to zero: \[ \text{det}(A) = 0 \] Calculating the determinant: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} - (-\sin(\theta)) \cdot \begin{vmatrix} -\cos(\theta) & -1 \\ -\sin(\theta) & 1 \end{vmatrix} - \cos(\theta) \cdot \begin{vmatrix} -\cos(\theta) & 1 \\ -\sin(\theta) & -1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1)(-1) = 1 - 1 = 0 \) 2. \( \begin{vmatrix} -\cos(\theta) & -1 \\ -\sin(\theta) & 1 \end{vmatrix} = (-\cos(\theta))(1) - (-1)(-\sin(\theta)) = -\cos(\theta) - \sin(\theta) = -(\cos(\theta) + \sin(\theta)) \) 3. \( \begin{vmatrix} -\cos(\theta) & 1 \\ -\sin(\theta) & -1 \end{vmatrix} = (-\cos(\theta))(-1) - (1)(-\sin(\theta)) = \cos(\theta) + \sin(\theta) \) Substituting back into the determinant: \[ \text{det}(A) = 1 \cdot 0 + \sin(\theta)(\cos(\theta) + \sin(\theta)) - \cos(\theta)(\cos(\theta) + \sin(\theta)) \] \[ = \sin(\theta)(\cos(\theta) + \sin(\theta)) - \cos(\theta)(\cos(\theta) + \sin(\theta)) \] \[ = (\sin(\theta) - \cos(\theta))(\cos(\theta) + \sin(\theta)) \] ### Step 5: Set the determinant to zero For a non-trivial solution, we set: \[ (\sin(\theta) - \cos(\theta))(\cos(\theta) + \sin(\theta)) = 0 \] This gives us two cases: 1. \( \sin(\theta) - \cos(\theta) = 0 \) → \( \tan(\theta) = 1 \) → \( \theta = \frac{\pi}{4} \) 2. \( \cos(\theta) + \sin(\theta) = 0 \) → \( \sin(\theta) = -\cos(\theta) \) → \( \theta = \frac{3\pi}{4} \) ### Step 6: Evaluate \( \frac{8\theta}{\pi} \) We will take \( \theta = \frac{3\pi}{4} \) as it falls within the range \( 0 < \theta < \pi \): \[ \frac{8\theta}{\pi} = \frac{8 \cdot \frac{3\pi}{4}}{\pi} = \frac{24\pi}{4\pi} = 6 \] ### Final Answer Thus, the value of \( \frac{8\theta}{\pi} \) is \( 6 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi and the system of equations (sin theta) x + y + z = 0 x + (cos theta) y + z = 0 (sin theta) x + (cos theta) y + z = 0 has a non-trivial solution, then theta =

the set of equations lambdax-y+(cos theta) z=0,3x+y+2z=0 (cos theta) x+y+2z=0 , 0 le theta lt 2 pi has non-trivial solution (s)

The system of equations x - y cos theta + z cos 2theta =0 -xcostheta+y-zcostheta=0 x cos 2theta-ycostheta + z=0 has non-trivial solution for theta equals

If y + "cos" theta = "sin" theta has a real solution, then

If Z = (A sin theta + B cos theta)/(A + B) , then

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

the value of theta for which the system of equations (sin 3theta)x-2y+3z=0, (cos 2theta)x+8y-7z=0 and 2x+14y-11z=0 has a non - trivial solution, is (here, n in Z )

Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta