Home
Class 12
MATHS
Calculate the value of the determinant |...

Calculate the value of the determinant `|{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the value of the determinant \[ D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} \] we will use column operations to simplify the determinant. ### Step 1: Perform Column Operations We will perform the following column operations: - \( C_1 \leftarrow C_1 - C_2 \) - \( C_2 \leftarrow C_2 - C_3 \) - \( C_3 \leftarrow C_3 - C_4 \) This gives us: \[ D = \begin{vmatrix} 1 - 1 & 1 - 2 & 1 - 4 & 1 \\ 1 - 1 & 2 - 3 & 3 - 4 & 4 \\ 1 - 1 & 3 - 6 & 6 - 10 & 10 \\ 1 - 1 & 4 - 10 & 10 - 20 & 20 \end{vmatrix} = \begin{vmatrix} 0 & -1 & -3 & 1 \\ 0 & -1 & -1 & 4 \\ 0 & -3 & -4 & 10 \\ 0 & -6 & -10 & 20 \end{vmatrix} \] ### Step 2: Factor Out Common Elements Since the first column consists entirely of zeros, we can factor out the determinant based on the fourth column: \[ D = (-1) \cdot \begin{vmatrix} -1 & -3 \\ -1 & -1 \\ -3 & -4 \\ -6 & -10 \end{vmatrix} \] ### Step 3: Calculate the 3x3 Determinant We will now calculate the determinant of the 3x3 matrix: \[ D' = \begin{vmatrix} -1 & -3 \\ -1 & -1 \\ -3 & -4 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D' = -1 \cdot (-1 \cdot -4 - (-3) \cdot -1) + 3 \cdot (-1 \cdot -3 - (-1) \cdot -1) \] Calculating the terms: 1. First term: \[ -1 \cdot (4 - 3) = -1 \cdot 1 = -1 \] 2. Second term: \[ 3 \cdot (3 - 1) = 3 \cdot 2 = 6 \] So, \[ D' = -1 + 6 = 5 \] ### Step 4: Final Calculation Now substituting back into the determinant \( D \): \[ D = -1 \cdot D' = -1 \cdot 5 = -5 \] ### Conclusion Thus, the value of the determinant is \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

Find the value of the "determinant" |{:(3,4,7),(-1,6,5),(2,8,10):}|

Find the value of the determinant |[1, 1, 1, 1],[ 1, 2, 3, 4],[ 1, 3, 6, 10 ],[1 ,4 ,10 ,20]|

Find the values of the following determinants |{:(1,1,1),(5,-3,1),(7,4,-2):}|

Find the values of the following determinants |{:(12,-10,5),(3,2,-1),(-4,0,3):}|

The cofactor of the element '4' in the determinant |(1,3,5,1),(2,3,4,2),(8,0,1,1),(0,2,1,1)| is

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

If lambda "and" mu are the cofactors of 3 and -2 respectively in the determinant |{:(1,0,-2),(3,-1,2),(4,5,6):}| the value of lambda+mu is

The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10-1,-(2^5-1)^2,1/(2^5+1)),(1/(2^5-1),(1/(2^5+1),-1/(2^10-1)^2) )|

Calculate the order of the reaction in A and B :- {:(A,,,B,,,Rate),(("mol"//1),,,("mol"//1),,,),(0.05,,,0.05,,,1.2xx10^(-3)),(0.10,,,0.05,,,2.4xx10^(-3)),(0.05,,,0.10,,,1.2xx10^(-3)):}