Home
Class 12
MATHS
lim(xto0)((1-cosx)(3+cosx))/(x tan 4x) i...

`lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x)` is equal to

A

4

B

3

C

2

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1 - \cos x)(3 + \cos x)}{x \tan 4x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ L = \lim_{x \to 0} \frac{(1 - \cos x)(3 + \cos x)}{x \tan 4x} \] ### Step 2: Use the identity for \(1 - \cos x\) We know that: \[ 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \] Substituting this into the limit gives: \[ L = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos x)}{x \tan 4x} \] ### Step 3: Rewrite \(\tan 4x\) Recall that: \[ \tan 4x = \frac{\sin 4x}{\cos 4x} \] Thus, we can rewrite the limit: \[ L = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos x) \cos 4x}{x \sin 4x} \] ### Step 4: Simplify the limit We can multiply and divide by \(4\) to help simplify: \[ L = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos x) \cos 4x}{4x \cdot \frac{\sin 4x}{4}} \] ### Step 5: Use standard limits Using the standard limits: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] We can rewrite \(\sin 4x\) as: \[ \sin 4x = 4x \cdot \frac{\sin 4x}{4x} \] So the limit becomes: \[ L = \lim_{x \to 0} \frac{2 \sin^2\left(\frac{x}{2}\right)(3 + \cos x) \cos 4x}{4x \cdot 1} \] ### Step 6: Substitute \(x = 0\) Now we evaluate the limit: - As \(x \to 0\), \(\sin\left(\frac{x}{2}\right) \to \frac{x}{2}\), so \(\sin^2\left(\frac{x}{2}\right) \to \left(\frac{x}{2}\right)^2 = \frac{x^2}{4}\). - \(3 + \cos(0) = 3 + 1 = 4\). - \(\cos(4x) \to \cos(0) = 1\). Thus: \[ L = \lim_{x \to 0} \frac{2 \cdot \frac{x^2}{4} \cdot 4 \cdot 1}{4x} = \lim_{x \to 0} \frac{2x^2}{4x} = \lim_{x \to 0} \frac{x}{2} = 0 \] ### Final Answer The limit evaluates to: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|5 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|26 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

The value of lim_(xrarr0)(((1-cos4x)(5+cosx))/(xtan5x)) is equal to

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

If and n are positive integers, then lim_(x->0)((cosx)^(1/ m)-(cosx)^(1/ n))/(x^2) equal to :

lim_( xrarr0) (1-cosx)/(x^(2))

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha, beta in R such that lim(x ->0) (x^2sin(betax))/(alphax-sin...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let f: RvecR be a continuous odd function, which vanishes exactly at o...

    Text Solution

    |

  4. The largets value of non negative integer for which lim(x->1){(-a x+si...

    Text Solution

    |

  5. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  6. underset(xto(pi)/(2))lim(cotx-cosx)/((pi-2x)^(3)) equals

    Text Solution

    |

  7. Let p=underset(xto0^(+))lim(1+tan^(2)sqrt(x))^((1)/(2x)). Then log(e)p...

    Text Solution

    |

  8. lim(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)is equal to

    Text Solution

    |

  9. underset(xto0)lim(sin(picos^(2)x))/(x^(2)) is equal to

    Text Solution

    |

  10. lim(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to

    Text Solution

    |

  11. If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

    Text Solution

    |

  12. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  13. If ("lim")(xvec0)[1+x1n(1+b^2)]^(1/x)=2bsin^2theta,b >0,s mftheta in ...

    Text Solution

    |

  14. The value of lim(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)...

    Text Solution

    |

  15. lim(h->0) (f(2h+2+h^2)-f(2))/(f(h-h^2+1)-f(1)) given that f'(2)=6 and ...

    Text Solution

    |

  16. lim(x->0) (sin(nx)((a-n)nx – tanx))/x^2= 0, when n is a non-zero posit...

    Text Solution

    |

  17. The integer n for which ("lim")(xvec0)((cosx-1)(cosx-ehatx)/(x^n) is f...

    Text Solution

    |

  18. Let f: R->R be such that f(1)=3 and f^(prime)(1)=6. Then lim(x->0)((f...

    Text Solution

    |

  19. lim(x to oo) ((x-3)/(x+2)) is equal to :

    Text Solution

    |