Home
Class 12
MATHS
If x=sin^(-1)((2t)/(1+t^2)) and y=tan^(-...

If `x=sin^(-1)((2t)/(1+t^2))` and y=`tan^(-1)((2t)/(1-t^2)),t > 1`. Prove that dy/dx=-1

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If x=sin^(-1)((2t)/(1+t^2))a n d \ y=tan^(-1)((2t)/(1-t^2)),t > 1. P rov e \ t h a t(dy)/(dx)=-1

If x=sin^(-1)[(2t)/(1+t^2)]'and'y=tan^(-1)((2t)/(1-t^2)), prove that dy/dx=1'.

If x=sin^-1""(2t)/(1+t^2) and y=tan ^-1""(2t)/(1-t) " the n find " dy/dx.

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=