Home
Class 12
MATHS
If (cosx)^(y)=(siny)^(x), then find (dy)...

If `(cosx)^(y)=(siny)^(x),` then find `(dy)/(dx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( (\cos x)^y = (\sin y)^x \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \log((\cos x)^y) = \log((\sin y)^x) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \log(a^b) = b \log(a) \), we can rewrite the equation as: \[ y \log(\cos x) = x \log(\sin y) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(y \log(\cos x)) = \frac{d}{dx}(x \log(\sin y)) \] ### Step 4: Apply the product rule Using the product rule \( \frac{d}{dx}(u \cdot v) = u \frac{dv}{dx} + v \frac{du}{dx} \), we differentiate the left side: \[ y \frac{d}{dx}(\log(\cos x)) + \log(\cos x) \frac{dy}{dx} \] And for the right side: \[ \log(\sin y) + x \frac{d}{dx}(\log(\sin y)) \] ### Step 5: Differentiate the logarithmic functions Using the derivatives \( \frac{d}{dx}(\log(u)) = \frac{1}{u} \frac{du}{dx} \): - For \( \log(\cos x) \): \[ \frac{d}{dx}(\log(\cos x)) = \frac{-\sin x}{\cos x} = -\tan x \] - For \( \log(\sin y) \): \[ \frac{d}{dx}(\log(\sin y)) = \frac{1}{\sin y} \cdot \cos y \cdot \frac{dy}{dx} \] ### Step 6: Substitute the derivatives back into the equation Substituting these derivatives back into our differentiated equation gives us: \[ y(-\tan x) + \log(\cos x) \frac{dy}{dx} = \log(\sin y) + x \left(\frac{\cos y}{\sin y} \frac{dy}{dx}\right) \] ### Step 7: Rearrange the equation to isolate \( \frac{dy}{dx} \) Rearranging the equation to isolate \( \frac{dy}{dx} \): \[ \log(\cos x) \frac{dy}{dx} - x \cot y \frac{dy}{dx} = \log(\sin y) + y \tan x \] Factoring out \( \frac{dy}{dx} \): \[ \frac{dy}{dx} \left(\log(\cos x) - x \cot y\right) = \log(\sin y) + y \tan x \] ### Step 8: Solve for \( \frac{dy}{dx} \) Finally, we solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\log(\sin y) + y \tan x}{\log(\cos x) - x \cot y} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{\log(\sin y) + y \tan x}{\log(\cos x) - x \cot y} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If (cosx)^y=(siny)^x , find (dy)/(dx) .

If siny+2x=e^x then find dy/dx

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=cosx^3 , then find (dy)/(dx) .

If (cosx)^y=(cosy)^x , find (dy)/(dx)

If y=x^(-1//2)+log_(5)x+(sinx)/(cosx)+2^(x), then find (dy)/(dx)

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If (cosx)^y=(cosy)^x find (dy)/(dx) .

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is