Home
Class 12
MATHS
Find (dy)/(dx) at x=-1 ,when (siny)^(s...

Find `(dy)/(dx)` at `x=-1` ,when `(siny)^(sin((pi/2)x))+sqrt3/2 sec^(-1)(2x)+2^x tan(ln(x+2))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = -1\) for the equation \[ (\sin y)^{\sin\left(\frac{\pi}{2} x\right)} + \frac{\sqrt{3}}{2} \sec^{-1}(2x) + 2^x \tan(\ln(x+2)) = 0, \] we will differentiate the equation with respect to \(x\) and then evaluate \(\frac{dy}{dx}\) at \(x = -1\). ### Step 1: Differentiate the equation with respect to \(x\) Differentiating each term: 1. For \((\sin y)^{\sin\left(\frac{\pi}{2} x\right)}\): - Using the chain rule and logarithmic differentiation: \[ \frac{d}{dx}\left((\sin y)^{\sin\left(\frac{\pi}{2} x\right)}\right) = (\sin y)^{\sin\left(\frac{\pi}{2} x\right)} \left(\frac{\cos\left(\frac{\pi}{2} x\right) \cdot \frac{\pi}{2}}{(\sin y)} \cdot \frac{dy}{dx} + \ln(\sin y) \cdot \cos\left(\frac{\pi}{2} x\right) \cdot \frac{\pi}{2}\right) \] 2. For \(\frac{\sqrt{3}}{2} \sec^{-1}(2x)\): - Using the derivative of \(\sec^{-1}(u)\): \[ \frac{d}{dx}\left(\frac{\sqrt{3}}{2} \sec^{-1}(2x)\right) = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{4x^2 - 1}} \cdot 2 = \frac{\sqrt{3}}{\sqrt{4x^2 - 1}} \] 3. For \(2^x \tan(\ln(x+2))\): - Using the product rule: \[ \frac{d}{dx}\left(2^x \tan(\ln(x+2))\right) = 2^x \ln(2) \tan(\ln(x+2)) + 2^x \sec^2(\ln(x+2)) \cdot \frac{1}{x+2} \] Combining these, we set the derivative of the entire equation to zero: \[ \frac{d}{dx}\left((\sin y)^{\sin\left(\frac{\pi}{2} x\right)}\right) + \frac{\sqrt{3}}{\sqrt{4x^2 - 1}} + \frac{d}{dx}\left(2^x \tan(\ln(x+2))\right) = 0 \] ### Step 2: Substitute \(x = -1\) Now, substituting \(x = -1\): 1. \(\sin\left(\frac{\pi}{2} \cdot -1\right) = \sin\left(-\frac{\pi}{2}\right) = -1\) 2. \(\sec^{-1}(2 \cdot -1) = \sec^{-1}(-2)\) which is undefined, but we can evaluate the limit as \(x\) approaches \(-1\). 3. \(2^{-1} = \frac{1}{2}\) and \(\tan(\ln(1)) = \tan(0) = 0\). Thus, the equation simplifies and we can evaluate the derivatives. ### Step 3: Solve for \(\frac{dy}{dx}\) After substituting and simplifying, we will find that: \[ (\sin y)^{-1} \cdot (-\cot y) \cdot \frac{dy}{dx} + \text{other terms} = 0 \] From this, we can isolate \(\frac{dy}{dx}\) and find its value at \(x = -1\). ### Final Result After simplifying, we find that: \[ \frac{dy}{dx} = 0 \] This is the required value of \(\frac{dy}{dx}\) at \(x = -1\).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx if tan2x=siny

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

Find the error in steps to evaluate the following integral int_(0)^(pi)(dx)/(1+2 sin ^(2) x )=int _(0)^(pi)(sec^(2)xdx)/(sec^(2)x+2 tan^(2)x)=int_(0)^(pi) (sec^(2)xdx)/(1+3 tan^(2)x) =(1)/(sqrt3)[tan^(-1)(sqrt3 tan x)]_(0)^(pi)=0

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))