Home
Class 12
MATHS
Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(...

Given `f(x)= sqrt(8/(1-x)+8/(1+x))` and `g(x) = 4/(f(sinx))+4/(f(cosx))` then `g(x)` is

A

`pi/2`

B

`pi`

C

`(3pi)/2`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will first simplify the function \( f(x) \) and then use it to find \( g(x) \). ### Step 1: Simplify \( f(x) \) Given: \[ f(x) = \sqrt{\frac{8}{1-x} + \frac{8}{1+x}} \] First, we will take \( 8 \) common and find a common denominator: \[ f(x) = \sqrt{8 \left( \frac{1}{1-x} + \frac{1}{1+x} \right)} \] The common denominator of \( 1-x \) and \( 1+x \) is \( (1-x)(1+x) = 1-x^2 \). Thus, we can rewrite the expression: \[ f(x) = \sqrt{8 \left( \frac{(1+x) + (1-x)}{(1-x)(1+x)} \right)} \] \[ = \sqrt{8 \left( \frac{2}{1-x^2} \right)} = \sqrt{\frac{16}{1-x^2}} \] So, we have: \[ f(x) = \frac{4}{\sqrt{1-x^2}} \] ### Step 2: Find \( f(\sin x) \) and \( f(\cos x) \) Now, we will calculate \( f(\sin x) \) and \( f(\cos x) \). 1. **Calculate \( f(\sin x) \)**: \[ f(\sin x) = \frac{4}{\sqrt{1 - \sin^2 x}} = \frac{4}{\sqrt{\cos^2 x}} = \frac{4}{|\cos x|} = \frac{4}{\cos x} \quad \text{(for } \cos x \geq 0\text{)} \] 2. **Calculate \( f(\cos x) \)**: \[ f(\cos x) = \frac{4}{\sqrt{1 - \cos^2 x}} = \frac{4}{\sqrt{\sin^2 x}} = \frac{4}{|\sin x|} = \frac{4}{\sin x} \quad \text{(for } \sin x \geq 0\text{)} \] ### Step 3: Define \( g(x) \) Now we can define \( g(x) \): \[ g(x) = \frac{4}{f(\sin x)} + \frac{4}{f(\cos x)} = \frac{4}{\frac{4}{|\cos x|}} + \frac{4}{\frac{4}{|\sin x|}} \] \[ = |\cos x| + |\sin x| \] ### Step 4: Analyze the periodicity of \( g(x) \) The function \( g(x) = |\cos x| + |\sin x| \) is periodic. To find its period, we note that both \( |\sin x| \) and \( |\cos x| \) have a period of \( \pi \). Therefore, \( g(x) \) is also periodic with a period of \( \pi \). ### Conclusion Thus, the function \( g(x) \) is periodic with a period of \( \pi \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,

If f(x) = root(3)(x) and g(x) = x^(3) + 8 , find (f @ g) (3) .

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)=sinx" and "g(x)=sgn sinx , then g'(1) equals

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. about to only mathematics

    Text Solution

    |

  2. Which of the following functions is an odd function?

    Text Solution

    |

  3. Given f(x)= sqrt(8/(1-x)+8/(1+x)) and g(x) = 4/(f(sinx))+4/(f(cosx)) t...

    Text Solution

    |

  4. Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all po...

    Text Solution

    |

  5. Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where ...

    Text Solution

    |

  6. Which of the following function is surjective but not injective. (a) ...

    Text Solution

    |

  7. If f(x) = 2 x^3 + 7x - 5 then f^(-1) (4) is :

    Text Solution

    |

  8. The range of the function f(x)=(e^(x)*logx*5^(x^(2)+2)*(x^(2)-7x+10)...

    Text Solution

    |

  9. If x=cos^(-1)(cos 4) " and " y=sin^(-1)(sin3), then which of the follo...

    Text Solution

    |

  10. Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Co...

    Text Solution

    |

  11. If f(x)=e^(sin(x-[x])cospix), where [x] denotes the greatest integer f...

    Text Solution

    |

  12. Find the range of the function f(x)=cot^(-1)(log)(0. 5)(x^4-2x^2+3)

    Text Solution

    |

  13. Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes gr...

    Text Solution

    |

  14. The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the g...

    Text Solution

    |

  15. Which one of the following function best represents the graphs as show...

    Text Solution

    |

  16. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  17. The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2)...

    Text Solution

    |

  18. If f(x) is a function f:R-> R, we say f(x) has property I. If f(f(x)) ...

    Text Solution

    |

  19. Let f(x)=x/(1+x) and let g(x)=(rx)/(1-x) , Let S be the set off all re...

    Text Solution

    |

  20. Let f be a linear function with properties f(1)lef(2),f(3)gef(4)and ...

    Text Solution

    |