Home
Class 12
MATHS
Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1...

Let `f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R.`
Consider the following statements.
I. Domain of f is R.
II. Range of f is R.
III. Domain of f is `R-(4n-1)pi/2, n in I.`
IV. Domain of f is `R-(4n+1)pi/2, n in I.`
Which of the following is correct?

A

(a)I and II

B

(b)II and III

C

(c)III and IV

D

(d)II, III and IV

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given and determine its domain and range. The function is defined as: \[ f(x) = \frac{(2\sin x + \sin 2x)}{(2\cos x + \sin 2x)} \cdot \frac{(1 - \cos x)}{(1 - \sin x)} \] ### Step 1: Identify the Denominator The function is defined when the denominator is not equal to zero. Thus, we need to find when: \[ (2\cos x + \sin 2x)(1 - \sin x) \neq 0 \] ### Step 2: Analyze Each Factor 1. **For \( 1 - \sin x \neq 0 \)**: - This implies \( \sin x \neq 1 \). - The values of \( x \) where \( \sin x = 1 \) are given by: \[ x = \frac{\pi}{2} + 2n\pi, \quad n \in \mathbb{Z} \] 2. **For \( 2\cos x + \sin 2x \neq 0 \)**: - We can rewrite \( \sin 2x \) as \( 2\sin x \cos x \), so: \[ 2\cos x + 2\sin x \cos x \neq 0 \] - Factoring out \( 2\cos x \): \[ 2\cos x(1 + \sin x) \neq 0 \] - This gives us two conditions: - \( \cos x \neq 0 \) implies \( x \neq \frac{\pi}{2} + n\pi, \quad n \in \mathbb{Z} \) - \( 1 + \sin x \neq 0 \) implies \( \sin x \neq -1 \), which occurs at: \[ x = \frac{3\pi}{2} + 2n\pi, \quad n \in \mathbb{Z} \] ### Step 3: Combine Conditions for Domain The function is undefined at: - \( x = \frac{\pi}{2} + 2n\pi \) (where \( \sin x = 1 \)) - \( x = \frac{3\pi}{2} + 2n\pi \) (where \( \sin x = -1 \)) - \( x = \frac{\pi}{2} + n\pi \) (where \( \cos x = 0 \)) Thus, the domain of \( f \) is: \[ \mathbb{R} - \left\{ \frac{(4n-1)\pi}{2}, n \in \mathbb{Z} \right\} \] ### Step 4: Determine the Range To find the range of \( f(x) \): - The function \( f(x) \) can be simplified to: \[ f(x) = 2\tan^2 x \] - Since \( \tan x \) can take any real value, \( \tan^2 x \) will take values from \( 0 \) to \( +\infty \). - Therefore, \( f(x) \) can take values from \( 0 \) to \( +\infty \). ### Conclusion From our analysis: - The domain of \( f \) is \( \mathbb{R} - \left\{ \frac{(4n-1)\pi}{2}, n \in \mathbb{Z} \right\} \). - The range of \( f \) is \( [0, +\infty) \). ### Final Answer - Statement I: False (Domain is not all of \( \mathbb{R} \)) - Statement II: False (Range is not all of \( \mathbb{R} \)) - Statement III: True (Domain is \( \mathbb{R} - \left\{ \frac{(4n-1)\pi}{2}, n \in \mathbb{Z} \right\} \)) - Statement IV: False (Domain is not \( \mathbb{R} - \left\{ \frac{(4n+1)\pi}{2}, n \in \mathbb{Z} \right\} \)) Thus, the correct statement is **III**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(tanx)=sin2x: x ne (2n+1)(pi)/(2), n in I then which of the following is an incorrect statement?

If f (tan x) = cos 2x , x != (2n + 1) pi/2, n in I then incorrect statement is

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the domain of f(x)i sR domain of f(x)i s[-1,1] range of f(x) is [-(2pi)/3,pi/3] range of f(x)i sR

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

The integral I=inte^(x)((1+sinx)/(1+cosx))dx=e^(x)f(x)+C (where, C is the constant of integration). Then, the range of y=f(x) (for all x in the domain of f(x) ) is

Find the domain and range of f(x)=(1)/(2-sin3x).

Consider the real-valued function satisfying 2f(sinx)+f(cosx)=xdot then the (a)domain of f(x)i sR (b)domain of f(x)i s[-1,1] (c)range of f(x) is [-(2pi)/3,pi/3] (d)range of f(x)i sR

Statement -1 Domain of f(x) = (1)/(sqrt([x] - x)) is phi . and Statement -2 : [x] le x AA x in R R .

If f(x)=sinx+cosx and g(x)=x^2-1 , then g(f (x)) is invertible in the domain .

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. The range of the function f(x)=(e^(x)*logx*5^(x^(2)+2)*(x^(2)-7x+10)...

    Text Solution

    |

  2. If x=cos^(-1)(cos 4) " and " y=sin^(-1)(sin3), then which of the follo...

    Text Solution

    |

  3. Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Co...

    Text Solution

    |

  4. If f(x)=e^(sin(x-[x])cospix), where [x] denotes the greatest integer f...

    Text Solution

    |

  5. Find the range of the function f(x)=cot^(-1)(log)(0. 5)(x^4-2x^2+3)

    Text Solution

    |

  6. Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes gr...

    Text Solution

    |

  7. The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the g...

    Text Solution

    |

  8. Which one of the following function best represents the graphs as show...

    Text Solution

    |

  9. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  10. The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2)...

    Text Solution

    |

  11. If f(x) is a function f:R-> R, we say f(x) has property I. If f(f(x)) ...

    Text Solution

    |

  12. Let f(x)=x/(1+x) and let g(x)=(rx)/(1-x) , Let S be the set off all re...

    Text Solution

    |

  13. Let f be a linear function with properties f(1)lef(2),f(3)gef(4)and ...

    Text Solution

    |

  14. Suppose R is relation whose graph is symmetric to both X-axis and Y-ax...

    Text Solution

    |

  15. The area between the curve 2{y} =[x] +1,0 leq y lt 1, where {.} and [....

    Text Solution

    |

  16. If f(x)=sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(...

    Text Solution

    |

  17. Find the number of solutions of the equation e^(2x) + e^x-2=[{x^2 + 10...

    Text Solution

    |

  18. Total number of values of x, of the form 1/n, n in N in the interval ...

    Text Solution

    |

  19. The sum of the maximum and minimum values of the function f(x)=1/(1+(2...

    Text Solution

    |

  20. Let f: X -> Y be an invertible function. Show that the inverse of f^(...

    Text Solution

    |