Home
Class 12
MATHS
Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(...

Range of `f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)),` where `[*]` denotes greatest integer function, is

A

`(0,(e+1)/e) cup {2}`

B

(0,1)

C

`(0,1] cup {2}`

D

`(0,1) cup {2}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \left[ \frac{1}{\log(x^2 + e)} \right] + \frac{1}{\sqrt{1 + x^2}} \), where \([\cdot]\) denotes the greatest integer function, we will analyze the two components of the function separately. ### Step 1: Analyze \( f_1(x) = \frac{1}{\log(x^2 + e)} \) 1. **Determine the domain of \( \log(x^2 + e) \)**: - Since \( x^2 + e > e > 0 \) for all \( x \in \mathbb{R} \), \( \log(x^2 + e) \) is defined for all real \( x \). 2. **Find the minimum value of \( \log(x^2 + e) \)**: - The minimum occurs when \( x^2 \) is minimized, which is at \( x = 0 \): \[ \log(0^2 + e) = \log(e) = 1. \] - As \( |x| \to \infty \), \( x^2 + e \to \infty \) and thus \( \log(x^2 + e) \to \infty \). 3. **Determine the range of \( \frac{1}{\log(x^2 + e)} \)**: - Since \( \log(x^2 + e) \) ranges from \( 1 \) to \( \infty \): \[ \frac{1}{\log(x^2 + e)} \text{ ranges from } \frac{1}{\infty} \text{ to } \frac{1}{1} \text{, i.e., } (0, 1]. \] 4. **Apply the greatest integer function**: - Thus, \( f_1(x) = \left[ \frac{1}{\log(x^2 + e)} \right] \) can take values: - \( 0 \) (for \( \frac{1}{\log(x^2 + e)} \) in \( (0, 1) \)) - \( 1 \) (for \( \frac{1}{\log(x^2 + e)} = 1 \) when \( x = 0 \)). ### Step 2: Analyze \( f_2(x) = \frac{1}{\sqrt{1 + x^2}} \) 1. **Determine the range of \( \frac{1}{\sqrt{1 + x^2}} \)**: - The minimum value occurs as \( |x| \to \infty \): \[ \frac{1}{\sqrt{1 + x^2}} \to 0. \] - The maximum value occurs at \( x = 0 \): \[ \frac{1}{\sqrt{1 + 0^2}} = 1. \] - Thus, \( f_2(x) \) ranges from \( 0 \) to \( 1 \). ### Step 3: Combine the results 1. **Calculate \( f(x) = f_1(x) + f_2(x) \)**: - If \( x = 0 \): \[ f(0) = f_1(0) + f_2(0) = 1 + 1 = 2. \] - If \( x \neq 0 \): - \( f_1(x) \) can be \( 0 \) or \( 1 \). - \( f_2(x) \) ranges from \( 0 \) to \( 1 \). - Therefore, \( f(x) \) can take values: - \( 0 + (0, 1) = (0, 1) \) (when \( f_1(x) = 0 \)) - \( 1 + (0, 1) = (1, 2) \) (when \( f_1(x) = 1 \)) ### Final Result The overall range of \( f(x) \) is: \[ f(x) \in [0, 1) \cup [2]. \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|22 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 12|4 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The domain of function f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), where [.] denotes the greatest integer function is :

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Option Correct Type Questions)
  1. If f(x)=e^(sin(x-[x])cospix), where [x] denotes the greatest integer f...

    Text Solution

    |

  2. Find the range of the function f(x)=cot^(-1)(log)(0. 5)(x^4-2x^2+3)

    Text Solution

    |

  3. Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes gr...

    Text Solution

    |

  4. The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the g...

    Text Solution

    |

  5. Which one of the following function best represents the graphs as show...

    Text Solution

    |

  6. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  7. The domain of definition of function f(x)=log(sqrt(x^(2)-5x-24)-x-2)...

    Text Solution

    |

  8. If f(x) is a function f:R-> R, we say f(x) has property I. If f(f(x)) ...

    Text Solution

    |

  9. Let f(x)=x/(1+x) and let g(x)=(rx)/(1-x) , Let S be the set off all re...

    Text Solution

    |

  10. Let f be a linear function with properties f(1)lef(2),f(3)gef(4)and ...

    Text Solution

    |

  11. Suppose R is relation whose graph is symmetric to both X-axis and Y-ax...

    Text Solution

    |

  12. The area between the curve 2{y} =[x] +1,0 leq y lt 1, where {.} and [....

    Text Solution

    |

  13. If f(x)=sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(...

    Text Solution

    |

  14. Find the number of solutions of the equation e^(2x) + e^x-2=[{x^2 + 10...

    Text Solution

    |

  15. Total number of values of x, of the form 1/n, n in N in the interval ...

    Text Solution

    |

  16. The sum of the maximum and minimum values of the function f(x)=1/(1+(2...

    Text Solution

    |

  17. Let f: X -> Y be an invertible function. Show that the inverse of f^(...

    Text Solution

    |

  18. The range of values of a so that all the roots of the equations 2x^(3)...

    Text Solution

    |

  19. If f(x) is continuous such that abs(f(x)) le 1, forall x in R " and " ...

    Text Solution

    |

  20. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |